Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.llms import HuggingFaceHub | |
from pathlib import Path | |
import chromadb | |
# List of available LLM models | |
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", | |
"google/gemma-7b-it", "google/gemma-2b-it", | |
"HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", | |
"google/flan-t5-xxl" | |
] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
# Load PDF document and create doc splits | |
def load_doc(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
# Create vector database | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
new_client = chromadb.EphemeralClient() | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=new_client, | |
collection_name=collection_name | |
) | |
return vectordb | |
# Initialize langchain LLM chain | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": | |
model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True} | |
elif llm_model == "microsoft/phi-2": | |
raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...") | |
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0": | |
model_kwargs = {"temperature": temperature, "max_new_tokens": 250, "top_k": top_k} | |
else: | |
model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k} | |
llm = HuggingFaceHub( | |
repo_id=llm_model, | |
model_kwargs=model_kwargs | |
) | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False | |
) | |
progress(0.9, desc="Done!") | |
return qa_chain | |
def initialize_demo(list_file_obj, chunk_size, chunk_overlap, db_progress): | |
list_file_path = [file.name for file in list_file_obj if file is not None] | |
collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50] | |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) | |
vector_db = create_db(doc_splits, collection_name) | |
qa_chain = initialize_llmchain( | |
list_llm[0], # Using Mistral-7B-Instruct-v0.2 as the LLM model | |
0.7, # Temperature | |
1024, # Max Tokens | |
3, # Top K | |
vector_db, | |
db_progress | |
) | |
return vector_db, collection_name, qa_chain, "Complete!" | |
def upload_file(file_obj): | |
list_file_path = [] | |
for file in file_obj: | |
if file is not None: | |
file_path = file.name | |
list_file_path.append(file_path) | |
return list_file_path | |
def demo(): | |
with gr.Blocks(theme="base") as demo: | |
vector_db = gr.State() | |
collection_name = gr.State() | |
qa_chain = gr.State() | |
with gr.Tab("Step 1 - Document pre-processing"): | |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") | |
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True) | |
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) | |
db_progress = gr.Textbox(label="Vector database initialization", value="None") | |
db_btn = gr.Button("Generate vector database...") | |
with gr.Tab("Step 2 - QA chain initialization"): | |
llm_progress = gr.Textbox(value="None", label="QA chain initialization") | |
qachain_btn = gr.Button("Initialize question-answering chain...") | |
with gr.Tab("Step 3 - Conversation with chatbot"): | |
chatbot = gr.Chatbot(height=300) | |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) | |
source1_page = gr.Number(label="Page", scale=1) | |
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) | |
source2_page = gr.Number(label="Page", scale=1) | |
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) | |
source3_page = gr.Number(label="Page", scale=1) | |
msg = gr.Textbox(placeholder="Type message", container=True) | |
submit_btn = gr.Button("Submit") | |
clear_btn = gr.ClearButton([msg, chatbot]) | |
document.upload(initialize_demo, inputs=[document, slider_chunk_size, slider_chunk_overlap, db_progress], outputs=[vector_db, collection_name, qa_chain, db_progress]) | |
qachain_btn.click(initialize_llmchain, inputs=[qa_chain, llm_progress], outputs=[qa_chain, llm_progress]) | |
submit_btn.click(lambda: None, inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2 | |