Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,46 @@
|
|
1 |
import streamlit as st
|
2 |
-
import requests
|
3 |
-
from transformers import pipeline
|
4 |
from PIL import Image
|
|
|
|
|
|
|
5 |
from io import BytesIO
|
6 |
-
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
image = Image.open(BytesIO(response.content))
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
if results and image:
|
39 |
-
st.image(image, caption="Video Thumbnail", use_container_width=True)
|
40 |
-
st.subheader("Detection Results:")
|
41 |
-
for res in results:
|
42 |
-
st.write(f"- **{res['label']}**: {res['score']:.4f}")
|
43 |
-
else:
|
44 |
-
st.error("Failed to retrieve or analyze the thumbnail.")
|
45 |
else:
|
46 |
-
st.
|
|
|
47 |
|
48 |
-
|
49 |
-
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
from PIL import Image
|
3 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
4 |
+
import torch
|
5 |
+
import requests
|
6 |
from io import BytesIO
|
7 |
+
|
8 |
+
# Load deepfake detection model and extractor
|
9 |
+
model_name = "systemkc/deepfake-detection-v1" # Example model (replace if needed)
|
10 |
+
extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
11 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
12 |
+
|
13 |
+
st.title("Deepfake Thumbnail Detector")
|
14 |
+
st.write("Upload a YouTube video link, and we’ll analyze the thumbnail to check for deepfakes.")
|
15 |
+
|
16 |
+
video_url = st.text_input("Enter YouTube Video Link:")
|
17 |
+
submit = st.button("Detect Deepfake")
|
18 |
+
|
19 |
+
if submit and video_url:
|
20 |
+
try:
|
21 |
+
video_id = video_url.split("v=")[-1].split("&")[0] if "v=" in video_url else video_url.split("/")[-1]
|
22 |
+
thumbnail_url = f"https://img.youtube.com/vi/{video_id}/maxresdefault.jpg"
|
23 |
+
response = requests.get(thumbnail_url)
|
24 |
+
response.raise_for_status()
|
25 |
+
|
26 |
image = Image.open(BytesIO(response.content))
|
27 |
+
st.image(image, caption="Video Thumbnail", use_container_width=True)
|
28 |
+
|
29 |
+
# Preprocess and predict
|
30 |
+
inputs = extractor(images=image, return_tensors="pt")
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(**inputs)
|
33 |
+
logits = outputs.logits
|
34 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
35 |
+
confidence = torch.softmax(logits, dim=1)[0, predicted_class].item()
|
36 |
+
|
37 |
+
# Interpret results
|
38 |
+
if predicted_class == 1: # Assuming class 1 = Deepfake
|
39 |
+
st.error(f"🚨 **Deepfake Detected** (Confidence: {confidence:.2%})")
|
40 |
+
st.write("⚠️ Indicators of manipulation detected in the thumbnail.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
else:
|
42 |
+
st.success(f"✅ **No Deepfake Detected** (Confidence: {confidence:.2%})")
|
43 |
+
st.write("👍 Thumbnail appears authentic based on the model’s analysis.")
|
44 |
|
45 |
+
except Exception as e:
|
46 |
+
st.error(f"Error: {str(e)}")
|