Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,46 @@
|
|
1 |
-
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
-
|
|
|
4 |
import requests
|
5 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
image = Image.open(image_file)
|
15 |
-
results = model(image)
|
16 |
-
return results
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
if
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
for result in image_results:
|
30 |
-
st.write(f"{result['label']}: {result['score']*100:.2f}%")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
detect_video(video_link)
|
|
|
|
|
1 |
from transformers import pipeline
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from pytube import YouTube
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
def detect_image(image):
|
10 |
+
model = pipeline("image-classification", model="google/vit-base-patch16-224")
|
11 |
+
return model(image)
|
12 |
|
13 |
+
def detect_video(video_url):
|
14 |
+
yt = YouTube(video_url)
|
15 |
+
stream = yt.streams.filter(file_extension='mp4').first()
|
16 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
|
17 |
+
stream.download(filename=tmp_file.name)
|
18 |
+
video_path = tmp_file.name
|
19 |
+
return video_path
|
20 |
|
21 |
+
def main():
|
22 |
+
st.title("VerifiAI - Image & Video Authenticity Checker")
|
23 |
+
option = st.sidebar.selectbox("Select Option", ["Image Detection", "Video Detection"])
|
|
|
|
|
|
|
24 |
|
25 |
+
if option == "Image Detection":
|
26 |
+
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
|
27 |
+
if uploaded_image:
|
28 |
+
image = Image.open(uploaded_image)
|
29 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
30 |
+
with st.spinner("Analyzing Image..."):
|
31 |
+
results = detect_image(image)
|
32 |
+
for result in results:
|
33 |
+
st.write(f"{result['label']}: {result['score']*100:.2f}%")
|
34 |
|
35 |
+
elif option == "Video Detection":
|
36 |
+
video_url = st.text_input("Enter YouTube Video Link")
|
37 |
+
if video_url:
|
38 |
+
st.video(video_url)
|
39 |
+
with st.spinner("Analyzing Video..."):
|
40 |
+
video_path = detect_video(video_url)
|
41 |
+
st.success("Video downloaded for analysis. Video detection model coming soon.")
|
|
|
|
|
42 |
|
43 |
+
if __name__ == "__main__":
|
44 |
+
if not torch.cuda.is_available():
|
45 |
+
st.warning("CUDA not available. Running on CPU might be slower.")
|
46 |
+
main()
|
|