Spaces:
Sleeping
Sleeping
File size: 17,552 Bytes
64cf475 eb91037 64cf475 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
#!/usr/bin/env python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This tool creates an html visualization of a TensorFlow Lite graph.
Example usage:
python visualize.py foo.tflite foo.html
"""
import json
import os
import re
import sys
import numpy as np
# pylint: disable=g-import-not-at-top
if not os.path.splitext(__file__)[0].endswith(
os.path.join("tflite_runtime", "visualize")):
# This file is part of tensorflow package.
from tensorflow.lite.python import schema_py_generated as schema_fb
else:
# This file is part of tflite_runtime package.
from tflite_runtime import schema_py_generated as schema_fb
import gradio as gr
from html import escape
# A CSS description for making the visualizer
# body {font-family: sans-serif; background-color: #fa0;}
# # font-family: sans-serif;
"""<style>
table {background-color: #eca;}
th {background-color: black; color: white;}
h1 {
background-color: ffaa00;
padding:5px;
color: black;
}
svg {
margin: 10px;
border: 2px;
border-style: solid;
border-color: black;
background: white;
}
div {
border-radius: 5px;
background-color: #fec;
padding:5px;
margin:5px;
}
.tooltip {color: blue;}
.tooltip .tooltipcontent {
visibility: hidden;
color: black;
background-color: yellow;
padding: 5px;
border-radius: 4px;
position: absolute;
z-index: 1;
}
.tooltip:hover .tooltipcontent {
visibility: visible;
}
.edges line {
stroke: #333;
}
text {
font-weight: bold;
}
.nodes text {
color: black;
pointer-events: none;
font-size: 11px;
}
</style>"""
_CSS = """
<script src="https://d3js.org/d3.v4.min.js"></script>
"""
_D3_HTML_TEMPLATE = """
<script>
function buildGraph() {
// Build graph data
var graph = %s;
var svg = d3.select("#subgraph%d")
var width = svg.attr("width");
var height = svg.attr("height");
// Make the graph scrollable.
svg = svg.call(d3.zoom().on("zoom", function() {
svg.attr("transform", d3.event.transform);
})).append("g");
var color = d3.scaleOrdinal(d3.schemeDark2);
var simulation = d3.forceSimulation()
.force("link", d3.forceLink().id(function(d) {return d.id;}))
.force("charge", d3.forceManyBody())
.force("center", d3.forceCenter(0.5 * width, 0.5 * height));
var edge = svg.append("g").attr("class", "edges").selectAll("line")
.data(graph.edges).enter().append("path").attr("stroke","black").attr("fill","none")
// Make the node group
var node = svg.selectAll(".nodes")
.data(graph.nodes)
.enter().append("g")
.attr("x", function(d){return d.x})
.attr("y", function(d){return d.y})
.attr("transform", function(d) {
return "translate( " + d.x + ", " + d.y + ")"
})
.attr("class", "nodes")
.call(d3.drag()
.on("start", function(d) {
if(!d3.event.active) simulation.alphaTarget(1.0).restart();
d.fx = d.x;d.fy = d.y;
})
.on("drag", function(d) {
d.fx = d3.event.x; d.fy = d3.event.y;
})
.on("end", function(d) {
if (!d3.event.active) simulation.alphaTarget(0);
d.fx = d.fy = null;
}));
// Within the group, draw a box for the node position and text
// on the side.
var node_width = 150;
var node_height = 30;
node.append("rect")
.attr("r", "5px")
.attr("width", node_width)
.attr("height", node_height)
.attr("rx", function(d) { return d.group == 1 ? 1 : 10; })
.attr("stroke", "#000000")
.attr("fill", function(d) { return d.group == 1 ? "#dddddd" : "#000000"; })
node.append("text")
.text(function(d) { return d.name; })
.attr("x", 5)
.attr("y", 20)
.attr("fill", function(d) { return d.group == 1 ? "#000000" : "#eeeeee"; })
// Setup force parameters and update position callback
var node = svg.selectAll(".nodes")
.data(graph.nodes);
// Bind the links
var name_to_g = {}
node.each(function(data, index, nodes) {
console.log(data.id)
name_to_g[data.id] = this;
});
function proc(w, t) {
return parseInt(w.getAttribute(t));
}
edge.attr("d", function(d) {
function lerp(t, a, b) {
return (1.0-t) * a + t * b;
}
var x1 = proc(name_to_g[d.source],"x") + node_width /2;
var y1 = proc(name_to_g[d.source],"y") + node_height;
var x2 = proc(name_to_g[d.target],"x") + node_width /2;
var y2 = proc(name_to_g[d.target],"y");
var s = "M " + x1 + " " + y1
+ " C " + x1 + " " + lerp(.5, y1, y2)
+ " " + x2 + " " + lerp(.5, y1, y2)
+ " " + x2 + " " + y2
return s;
});
}
console.log("Helllo!");
buildGraph();
</script>
"""
def TensorTypeToName(tensor_type):
"""Converts a numerical enum to a readable tensor type."""
for name, value in schema_fb.TensorType.__dict__.items():
if value == tensor_type:
return name
return None
def BuiltinCodeToName(code):
"""Converts a builtin op code enum to a readable name."""
for name, value in schema_fb.BuiltinOperator.__dict__.items():
if value == code:
return name
return None
def NameListToString(name_list):
"""Converts a list of integers to the equivalent ASCII string."""
if isinstance(name_list, str):
return name_list
else:
result = ""
if name_list is not None:
for val in name_list:
result = result + chr(int(val))
return result
class OpCodeMapper:
"""Maps an opcode index to an op name."""
def __init__(self, data):
self.code_to_name = {}
for idx, d in enumerate(data["operator_codes"]):
self.code_to_name[idx] = BuiltinCodeToName(d["builtin_code"])
if self.code_to_name[idx] == "CUSTOM":
self.code_to_name[idx] = NameListToString(d["custom_code"])
def __call__(self, x):
if x not in self.code_to_name:
s = "<UNKNOWN>"
else:
s = self.code_to_name[x]
return "%s (%d)" % (s, x)
class DataSizeMapper:
"""For buffers, report the number of bytes."""
def __call__(self, x):
if x is not None:
return "%d bytes" % len(x)
else:
return "--"
class TensorMapper:
"""Maps a list of tensor indices to a tooltip hoverable indicator of more."""
def __init__(self, subgraph_data):
self.data = subgraph_data
def __call__(self, x):
html = ""
if x is None:
return html
html += "<span class='tooltip'><span class='tooltipcontent'>"
for i in x:
tensor = self.data["tensors"][i]
html += str(i) + " "
html += NameListToString(tensor["name"]) + " "
html += TensorTypeToName(tensor["type"]) + " "
html += (repr(tensor["shape"]) if "shape" in tensor else "[]")
html += (repr(tensor["shape_signature"])
if "shape_signature" in tensor else "[]") + "<br>"
html += "</span>"
html += repr(x)
html += "</span>"
return html
def GenerateGraph(subgraph_idx, g, opcode_mapper):
"""Produces the HTML required to have a d3 visualization of the dag."""
def TensorName(idx):
return "t%d" % idx
def OpName(idx):
return "o%d" % idx
edges = []
nodes = []
first = {}
second = {}
pixel_mult = 200 # TODO(aselle): multiplier for initial placement
width_mult = 170 # TODO(aselle): multiplier for initial placement
for op_index, op in enumerate(g["operators"] or []):
if op["inputs"] is not None:
for tensor_input_position, tensor_index in enumerate(op["inputs"]):
if tensor_index not in first:
first[tensor_index] = ((op_index - 0.5 + 1) * pixel_mult,
(tensor_input_position + 1) * width_mult)
edges.append({
"source": TensorName(tensor_index),
"target": OpName(op_index)
})
if op["outputs"] is not None:
for tensor_output_position, tensor_index in enumerate(op["outputs"]):
if tensor_index not in second:
second[tensor_index] = ((op_index + 0.5 + 1) * pixel_mult,
(tensor_output_position + 1) * width_mult)
edges.append({
"target": TensorName(tensor_index),
"source": OpName(op_index)
})
nodes.append({
"id": OpName(op_index),
"name": opcode_mapper(op["opcode_index"]),
"group": 2,
"x": pixel_mult,
"y": (op_index + 1) * pixel_mult
})
for tensor_index, tensor in enumerate(g["tensors"]):
initial_y = (
first[tensor_index] if tensor_index in first else
second[tensor_index] if tensor_index in second else (0, 0))
nodes.append({
"id": TensorName(tensor_index),
"name": "%r (%d)" % (getattr(tensor, "shape", []), tensor_index),
"group": 1,
"x": initial_y[1],
"y": initial_y[0]
})
graph_str = json.dumps({"nodes": nodes, "edges": edges})
html = _D3_HTML_TEMPLATE % (graph_str, subgraph_idx)
return html
def GenerateTableHtml(items, keys_to_print, display_index=True):
"""Given a list of object values and keys to print, make an HTML table.
Args:
items: Items to print an array of dicts.
keys_to_print: (key, display_fn). `key` is a key in the object. i.e.
items[0][key] should exist. display_fn is the mapping function on display.
i.e. the displayed html cell will have the string returned by
`mapping_fn(items[0][key])`.
display_index: add a column which is the index of each row in `items`.
Returns:
An html table.
"""
html = ""
# Print the list of items
html += "<table><tr>\n"
html += "<tr>\n"
if display_index:
html += "<th>index</th>"
for h, mapper in keys_to_print:
html += "<th>%s</th>" % h
html += "</tr>\n"
for idx, tensor in enumerate(items):
html += "<tr>\n"
if display_index:
html += "<td>%d</td>" % idx
# print tensor.keys()
for h, mapper in keys_to_print:
val = tensor[h] if h in tensor else None
val = val if mapper is None else mapper(val)
html += "<td>%s</td>\n" % val
html += "</tr>\n"
html += "</table>\n"
return html
def CamelCaseToSnakeCase(camel_case_input):
"""Converts an identifier in CamelCase to snake_case."""
s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", camel_case_input)
return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower()
def FlatbufferToDict(fb, preserve_as_numpy):
"""Converts a hierarchy of FB objects into a nested dict.
We avoid transforming big parts of the flat buffer into python arrays. This
speeds conversion from ten minutes to a few seconds on big graphs.
Args:
fb: a flat buffer structure. (i.e. ModelT)
preserve_as_numpy: true if all downstream np.arrays should be preserved.
false if all downstream np.array should become python arrays
Returns:
A dictionary representing the flatbuffer rather than a flatbuffer object.
"""
if isinstance(fb, int) or isinstance(fb, float) or isinstance(fb, str):
return fb
elif hasattr(fb, "__dict__"):
result = {}
for attribute_name in dir(fb):
attribute = fb.__getattribute__(attribute_name)
if not callable(attribute) and attribute_name[0] != "_":
snake_name = CamelCaseToSnakeCase(attribute_name)
preserve = True if attribute_name == "buffers" else preserve_as_numpy
result[snake_name] = FlatbufferToDict(attribute, preserve)
return result
elif isinstance(fb, np.ndarray):
return fb if preserve_as_numpy else fb.tolist()
elif hasattr(fb, "__len__"):
return [FlatbufferToDict(entry, preserve_as_numpy) for entry in fb]
else:
return fb
def CreateDictFromFlatbuffer(buffer_data):
model_obj = schema_fb.Model.GetRootAsModel(buffer_data, 0)
model = schema_fb.ModelT.InitFromObj(model_obj)
return FlatbufferToDict(model, preserve_as_numpy=False)
def create_html(tflite_input, input_is_filepath=True): # pylint: disable=invalid-name
"""Returns html description with the given tflite model.
Args:
tflite_input: TFLite flatbuffer model path or model object.
input_is_filepath: Tells if tflite_input is a model path or a model object.
Returns:
Dump of the given tflite model in HTML format.
Raises:
RuntimeError: If the input is not valid.
"""
# Convert the model into a JSON flatbuffer using flatc (build if doesn't
# exist.
if input_is_filepath:
if not os.path.exists(tflite_input):
raise RuntimeError("Invalid filename %r" % tflite_input)
if tflite_input.endswith(".tflite") or tflite_input.endswith(".bin") or tflite_input.endswith(".tf_lite"):
with open(tflite_input, "rb") as file_handle:
file_data = bytearray(file_handle.read())
data = CreateDictFromFlatbuffer(file_data)
elif tflite_input.endswith(".json"):
data = json.load(open(tflite_input))
else:
raise RuntimeError("Input file was not .tflite or .json")
else:
data = CreateDictFromFlatbuffer(tflite_input)
html = ""
# html += _CSS
html += "<h1>TensorFlow Lite Model</h2>"
data["filename"] = tflite_input if input_is_filepath else (
"Null (used model object)") # Avoid special case
toplevel_stuff = [("filename", None), ("version", None),
("description", None)]
html += "<table>\n"
for key, mapping in toplevel_stuff:
if not mapping:
mapping = lambda x: x
html += "<tr><th>%s</th><td>%s</td></tr>\n" % (key, mapping(data.get(key)))
html += "</table>\n"
# Spec on what keys to display
buffer_keys_to_display = [("data", DataSizeMapper())]
operator_keys_to_display = [("builtin_code", BuiltinCodeToName),
("custom_code", NameListToString),
("version", None)]
# Update builtin code fields.
for d in data["operator_codes"]:
d["builtin_code"] = max(d["builtin_code"], d["deprecated_builtin_code"])
for subgraph_idx, g in enumerate(data["subgraphs"]):
# Subgraph local specs on what to display
html += "<div class='subgraph'>"
tensor_mapper = TensorMapper(g)
opcode_mapper = OpCodeMapper(data)
op_keys_to_display = [("inputs", tensor_mapper), ("outputs", tensor_mapper),
("builtin_options", None),
("opcode_index", opcode_mapper)]
tensor_keys_to_display = [("name", NameListToString),
("type", TensorTypeToName), ("shape", None),
("shape_signature", None), ("buffer", None),
("quantization", None)]
html += "<h2>Subgraph %d</h2>\n" % subgraph_idx
# Inputs and outputs.
html += "<h3>Inputs/Outputs</h3>\n"
html += GenerateTableHtml([{
"inputs": g["inputs"],
"outputs": g["outputs"]
}], [("inputs", tensor_mapper), ("outputs", tensor_mapper)],
display_index=False)
# Print the tensors.
html += "<h3>Tensors</h3>\n"
html += GenerateTableHtml(g["tensors"], tensor_keys_to_display)
# Print the ops.
if g["operators"]:
html += "<h3>Ops</h3>\n"
html += GenerateTableHtml(g["operators"], op_keys_to_display)
# Visual graph.
html += "<svg id='subgraph%d' width='1600' height='900'></svg>\n" % (
subgraph_idx,)
html += GenerateGraph(subgraph_idx, g, opcode_mapper)
html += "</div>"
# Buffers have no data, but maybe in the future they will
html += "<h2>Buffers</h2>\n"
html += GenerateTableHtml(data["buffers"], buffer_keys_to_display)
# Operator codes
html += "<h2>Operator Codes</h2>\n"
html += GenerateTableHtml(data["operator_codes"], operator_keys_to_display)
# html += "</body></html>\n"
# return f"<iframe src={escape(html)} ></iframe>"
html += """ <script src="https://d3js.org/d3.v4.min.js"></script> """
return html
def main(argv):
try:
tflite_input = argv[1]
html_output = argv[2]
except IndexError:
print("Usage: %s <input tflite> <output html>" % (argv[0]))
else:
html = create_html(tflite_input)
with open(html_output, "w") as output_file:
output_file.write(html)
def process_file(file):
try:
html = create_html(file.name)
return html
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(head=_CSS, ) as demo:
gr.Markdown(
"""
## TensorFlow Lite Model Visualizer
Drag and drop your `.tflite`, `.bin` or `.tf_lite` model files below to analyze them.
""")
file_input = gr.File(label="Upload TFLite File")
html_output = gr.HTML(label="Generated HTML", container=True)
file_input.change(process_file, inputs=file_input, outputs=html_output)
demo.launch()
# if __name__ == "__main__":
# main(sys.argv)
|