Fix the demo
Browse files
app.py
CHANGED
@@ -1,9 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import os
|
4 |
from pathlib import Path
|
5 |
from matchms import Spectrum
|
6 |
from typing import List, Optional, Literal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# os.system("nvidia-smi")
|
8 |
# print("TORCH_CUDA", torch.cuda.is_available())
|
9 |
|
@@ -29,6 +35,7 @@ def preprocess_spectra(spectra: List[Spectrum]) -> Spectrum:
|
|
29 |
return spectra
|
30 |
|
31 |
def run(r_filepath:Path, q_filepath:Path,
|
|
|
32 |
tolerance: float = 0.1,
|
33 |
mz_power: float = 0.0,
|
34 |
intensity_power: float = 1.0,
|
@@ -37,7 +44,9 @@ def run(r_filepath:Path, q_filepath:Path,
|
|
37 |
n_max_peaks: int = 1024,
|
38 |
match_limit: int = 2048,
|
39 |
array_type: Literal['sparse','numpy'] = "numpy",
|
40 |
-
sparse_threshold: float = .75
|
|
|
|
|
41 |
print('\n>>>>', r_filepath, q_filepath, array_type, '\n')
|
42 |
# debug = os.getenv('CUDAMS_DEBUG') == '1'
|
43 |
# if debug:
|
@@ -46,65 +55,63 @@ def run(r_filepath:Path, q_filepath:Path,
|
|
46 |
|
47 |
assert r_filepath is not None, "Reference file is missing."
|
48 |
assert q_filepath is not None, "Query file is missing."
|
49 |
-
import tempfile
|
50 |
-
import numpy as np
|
51 |
-
from simms.similarity import CudaCosineGreedy
|
52 |
-
from matchms.importing import load_from_mgf
|
53 |
-
from matchms import calculate_scores
|
54 |
-
import matplotlib.pyplot as plt
|
55 |
|
56 |
-
refs =
|
57 |
-
|
|
|
|
|
58 |
|
59 |
# If we have small spectra, don't make a huge batch
|
60 |
if batch_size > max(len(refs), len(ques)):
|
61 |
batch_size = max(len(refs), len(ques))
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
scores_obj = calculate_scores(
|
64 |
refs, ques,
|
65 |
-
similarity_function=
|
66 |
-
tolerance=tolerance,
|
67 |
-
mz_power=mz_power,
|
68 |
-
intensity_power=intensity_power,
|
69 |
-
shift=shift,
|
70 |
-
batch_size=batch_size,
|
71 |
-
n_max_peaks=n_max_peaks,
|
72 |
-
match_limit=match_limit,
|
73 |
-
sparse_threshold=sparse_threshold
|
74 |
-
),
|
75 |
array_type=array_type
|
76 |
)
|
77 |
|
78 |
score_vis = tempfile.NamedTemporaryFile(suffix='.jpg', delete=False)
|
79 |
|
80 |
-
fig, axs = plt.subplots(1, 2,
|
81 |
-
figsize=(10, 5),
|
82 |
-
dpi=150)
|
83 |
-
|
84 |
scores = scores_obj.to_array()
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
90 |
|
91 |
-
plt.suptitle("
|
92 |
plt.savefig(score_vis.name)
|
93 |
|
94 |
-
score = tempfile.NamedTemporaryFile(suffix='.npz', delete=False)
|
95 |
np.savez(score.name, scores=scores)
|
96 |
|
97 |
-
|
98 |
-
pickle_ = tempfile.NamedTemporaryFile(suffix='.pickle', delete=False)
|
99 |
|
100 |
Path(pickle_.name).write_bytes(pickle.dumps(scores_obj))
|
101 |
return score.name, score_vis.name, pickle_.name
|
102 |
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown("""
|
105 |
-
#
|
106 |
-
|
107 |
-
|
|
|
108 |
""")
|
109 |
with gr.Row():
|
110 |
refs = gr.File(label="Upload REFERENCES.mgf",
|
@@ -113,28 +120,33 @@ with gr.Blocks() as demo:
|
|
113 |
ques = gr.File(label="Upload QUERIES.mgf",
|
114 |
interactive=True, value='pesticides.mgf')
|
115 |
with gr.Row():
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
120 |
with gr.Row():
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
with gr.Row():
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
138 |
with gr.Row():
|
139 |
score_vis = gr.Image()
|
140 |
|
@@ -143,10 +155,19 @@ with gr.Blocks() as demo:
|
|
143 |
interactive=False)
|
144 |
out_pickle = gr.File(label="Download full `Scores` object (.pickle format)",
|
145 |
interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
btn = gr.Button("Run")
|
147 |
-
btn.click(fn=run,
|
148 |
-
|
149 |
-
|
|
|
|
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from pathlib import Path
|
3 |
from matchms import Spectrum
|
4 |
from typing import List, Optional, Literal
|
5 |
+
import tempfile
|
6 |
+
import numpy as np
|
7 |
+
from simms.similarity import CudaCosineGreedy, CudaModifiedCosine
|
8 |
+
from matchms.importing import load_from_mgf
|
9 |
+
from matchms import calculate_scores
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import pickle
|
12 |
+
|
13 |
# os.system("nvidia-smi")
|
14 |
# print("TORCH_CUDA", torch.cuda.is_available())
|
15 |
|
|
|
35 |
return spectra
|
36 |
|
37 |
def run(r_filepath:Path, q_filepath:Path,
|
38 |
+
similarity_method: Literal['CosineGreedy','ModifiedCosine'] = 'CosineGreedy',
|
39 |
tolerance: float = 0.1,
|
40 |
mz_power: float = 0.0,
|
41 |
intensity_power: float = 1.0,
|
|
|
44 |
n_max_peaks: int = 1024,
|
45 |
match_limit: int = 2048,
|
46 |
array_type: Literal['sparse','numpy'] = "numpy",
|
47 |
+
sparse_threshold: float = .75,
|
48 |
+
do_preprocess: bool = False,
|
49 |
+
):
|
50 |
print('\n>>>>', r_filepath, q_filepath, array_type, '\n')
|
51 |
# debug = os.getenv('CUDAMS_DEBUG') == '1'
|
52 |
# if debug:
|
|
|
55 |
|
56 |
assert r_filepath is not None, "Reference file is missing."
|
57 |
assert q_filepath is not None, "Query file is missing."
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
refs, ques = list(load_from_mgf(str(r_filepath))), list(load_from_mgf(str(q_filepath)))
|
60 |
+
if do_preprocess:
|
61 |
+
refs = preprocess_spectra(refs)
|
62 |
+
ques = preprocess_spectra(ques)
|
63 |
|
64 |
# If we have small spectra, don't make a huge batch
|
65 |
if batch_size > max(len(refs), len(ques)):
|
66 |
batch_size = max(len(refs), len(ques))
|
67 |
|
68 |
+
|
69 |
+
kwargs = dict(tolerance=tolerance, mz_power=mz_power, intensity_power=intensity_power, shift=shift, batch_size=batch_size,
|
70 |
+
n_max_peaks=n_max_peaks, match_limit=match_limit, sparse_threshold=sparse_threshold)
|
71 |
+
|
72 |
+
if similarity_method == 'ModifiedCosine' and shift != 0:
|
73 |
+
gr.Error("`ModifiedCosine` can not use shift - we will proceed as if shift is 0")
|
74 |
+
|
75 |
+
if similarity_method == 'ModifiedCosine':
|
76 |
+
kwargs.pop('shift')
|
77 |
+
|
78 |
+
similarity_class = CudaCosineGreedy if similarity_method == 'CosineGreedy' else CudaModifiedCosine
|
79 |
+
|
80 |
scores_obj = calculate_scores(
|
81 |
refs, ques,
|
82 |
+
similarity_function=similarity_class(**kwargs),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
array_type=array_type
|
84 |
)
|
85 |
|
86 |
score_vis = tempfile.NamedTemporaryFile(suffix='.jpg', delete=False)
|
87 |
|
|
|
|
|
|
|
|
|
88 |
scores = scores_obj.to_array()
|
89 |
+
|
90 |
+
outputs = len(scores.dtype.names)
|
91 |
+
|
92 |
+
fig, axs = plt.subplots(1, outputs,
|
93 |
+
figsize=(5*outputs, 5))
|
94 |
+
for title, ax in zip(scores.dtype.names, axs):
|
95 |
+
ax.imshow(scores[title])
|
96 |
+
ax.set_title(title)
|
97 |
|
98 |
+
plt.suptitle("Output values")
|
99 |
plt.savefig(score_vis.name)
|
100 |
|
101 |
+
score = tempfile.NamedTemporaryFile(prefix='scores-', suffix='.npz', delete=False)
|
102 |
np.savez(score.name, scores=scores)
|
103 |
|
104 |
+
pickle_ = tempfile.NamedTemporaryFile(prefix='scores-', suffix='.pickle', delete=False)
|
|
|
105 |
|
106 |
Path(pickle_.name).write_bytes(pickle.dumps(scores_obj))
|
107 |
return score.name, score_vis.name, pickle_.name
|
108 |
|
109 |
with gr.Blocks() as demo:
|
110 |
gr.Markdown("""
|
111 |
+
# SimMS: A GPU-Accelerated Cosine Similarity implementation for Tandem Mass Spectrometry
|
112 |
+
|
113 |
+
Calculate cosine greedy similarity matrix using CUDA. See the [main repo](https://github.com/pangeai/simms) for this project.
|
114 |
+
This approach is x100-x500 faster than [MatchMS](https://github.com/matchms/matchms). Upload your MGF files below, or run the sample `pesticides.mgf` files against each other.
|
115 |
""")
|
116 |
with gr.Row():
|
117 |
refs = gr.File(label="Upload REFERENCES.mgf",
|
|
|
120 |
ques = gr.File(label="Upload QUERIES.mgf",
|
121 |
interactive=True, value='pesticides.mgf')
|
122 |
with gr.Row():
|
123 |
+
similarity_method = gr.Radio(['CosineGreedy', 'ModifiedCosine'], value='ModifiedCosine', type='value',
|
124 |
+
info="Choose one of the supported similarity methods. Need more? Let us know in github issues."
|
125 |
+
)
|
126 |
+
tolerance = gr.Number(value=0.1, label="tolerance")
|
127 |
+
mz_power = gr.Number(value=0.0, label="m/z power")
|
128 |
+
intensity_power = gr.Number(value=1.0, label="intensity power")
|
129 |
+
shift = gr.Number(value=0, label="mass shift")
|
130 |
with gr.Row():
|
131 |
+
batch_size = gr.Number(value=2048, label="Batch Size",
|
132 |
+
info='Compare this many spectra to same amount of other spectra at each iteration.')
|
133 |
+
n_max_peaks = gr.Number(value=1024, label="Maximum Number of Peaks",
|
134 |
+
info="Consider this many m/z peaks at most, per spectrum.")
|
135 |
+
match_limit = gr.Number(value=2048, label="Match Limit",
|
136 |
+
info="Consider this many pairs of m/z before stopping. "
|
137 |
+
"In practice, a value of 2048 gives more than 99.99% accuracy on GNPS")
|
138 |
+
do_preprocess = gr.Checkbox(value=False, label="filter spectra",
|
139 |
+
info="If you want to filter spectra before processing, we can do that. Look at the code to see details.")
|
140 |
with gr.Row():
|
141 |
+
array_type = gr.Radio(['numpy', 'sparse'],
|
142 |
+
value='numpy', type='value',
|
143 |
+
label='If `sparse`, everything with score less than `sparse_threshold` will be discarded.'
|
144 |
+
'If `numpy`, we disable sparse behaviour.')
|
145 |
+
sparse_threshold = gr.Slider(minimum=0, maximum=1, value=0.75, label="Sparse Threshold",
|
146 |
+
info="For very large results, when comparing, more than 10k x 10k, the output dense score matrix can grow too large for RAM."
|
147 |
+
"While most of the scores aren't useful (near zero). This argument discards all scores less than sparse_threshold, and returns "
|
148 |
+
"results as a SparseStack format."
|
149 |
+
)
|
150 |
with gr.Row():
|
151 |
score_vis = gr.Image()
|
152 |
|
|
|
155 |
interactive=False)
|
156 |
out_pickle = gr.File(label="Download full `Scores` object (.pickle format)",
|
157 |
interactive=False)
|
158 |
+
gr.Markdown("""
|
159 |
+
**NOTE** You can use this snippet to use the downloaded array:
|
160 |
+
```py
|
161 |
+
import numpy as np
|
162 |
+
arr = np.load('scores-nr0hqp85.npz')['scores']
|
163 |
+
print(arr)
|
164 |
+
```""")
|
165 |
btn = gr.Button("Run")
|
166 |
+
btn.click(fn=run,
|
167 |
+
inputs=[refs, ques, similarity_method, tolerance, mz_power, intensity_power, shift,
|
168 |
+
batch_size, n_max_peaks, match_limit,
|
169 |
+
array_type, sparse_threshold, do_preprocess],
|
170 |
+
outputs=[out_npz, score_vis, out_pickle])
|
171 |
|
172 |
if __name__ == "__main__":
|
173 |
demo.launch(debug=True)
|