Spaces:
Sleeping
Sleeping
import os | |
from langchain_huggingface import HuggingFaceEndpoint | |
import streamlit as st | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
model_id="mistralai/Mistral-7B-Instruct-v0.3" | |
# Function to get a language model for HuggingFace inference | |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1): | |
""" | |
Returns a language model for HuggingFace inference. | |
Parameters: | |
- model_id (str): The ID of the HuggingFace model repository. | |
- max_new_tokens (int): The maximum number of new tokens to generate. | |
- temperature (float): The temperature for sampling from the model. | |
Returns: | |
- llm (HuggingFaceEndpoint): The language model for HuggingFace inference. | |
""" | |
llm = HuggingFaceEndpoint( | |
repo_id=model_id, | |
task="text-generation", | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
token = os.getenv("HF_TOKEN") | |
) | |
return llm | |
# Configure the Streamlit app | |
st.set_page_config(page_title="Chatbot de service après-vente", page_icon="🤗") | |
st.title("Chatbot de service après-vente") | |
# A réactiver si on veut une petite description du chatbot | |
#st.markdown(f"*This is a simple chatbot that uses the HuggingFace transformers library to generate responses to your text input. It uses the {model_id}.*") | |
# Initialize session state for avatars | |
if "avatars" not in st.session_state: | |
st.session_state.avatars = {'user': None, 'assistant': None} | |
# Initialize session state for user text input | |
if 'user_text' not in st.session_state: | |
st.session_state.user_text = None | |
# Initialize session state for model parameters | |
if "max_response_length" not in st.session_state: | |
st.session_state.max_response_length = 256 | |
if "system_message" not in st.session_state: | |
st.session_state.system_message = "Tu es un assistant de service après-vente très sympathique qui parlera en français avec un client humain." | |
if "starter_message" not in st.session_state: | |
st.session_state.starter_message = "Bonjour, comment puis-je vous aider aujourd'hui ?" | |
# Sidebar for settings | |
with st.sidebar: | |
st.header("Configuration") | |
# AI Settings | |
st.session_state.system_message = st.text_area( | |
"Configuration du contexte de l\'assistant", value="Tu es un assistant de service après-vente très sympathique qui parlera en français avec un client humain." | |
) | |
st.session_state.starter_message = st.text_area( | |
'Premier message de l\'assistant', value="Bonjour, comment puis-je vous aider aujourd'hui ?" | |
) | |
# Model Settings | |
st.session_state.max_response_length = st.number_input( | |
"Max Response Length", value=256 | |
) | |
# Avatar Selection | |
st.markdown("*Select Avatars:*") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.session_state.avatars['assistant'] = st.selectbox( | |
"Avatar de l'assistant", options=["🤗", "💬", "🤖"], index=0 | |
) | |
with col2: | |
st.session_state.avatars['user'] = st.selectbox( | |
"Avatar de l'utilisateur", options=["👤", "👱♂️", "👨🏾", "👩", "👧🏾"], index=0 | |
) | |
# Reset Chat History | |
reset_history = st.button("Réinitialiser la conversation") | |
# Initialize or reset chat history | |
if "chat_history" not in st.session_state or reset_history: | |
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}] | |
def get_response(system_message, chat_history, user_text, | |
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}): | |
""" | |
Generates a response from the chatbot model. | |
Args: | |
system_message (str): The system message for the conversation. | |
chat_history (list): The list of previous chat messages. | |
user_text (str): The user's input text. | |
model_id (str, optional): The ID of the HuggingFace model to use. | |
eos_token_id (list, optional): The list of end-of-sentence token IDs. | |
max_new_tokens (int, optional): The maximum number of new tokens to generate. | |
get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function. | |
Returns: | |
tuple: A tuple containing the generated response and the updated chat history. | |
""" | |
# Set up the model | |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1) | |
# Create the prompt template | |
prompt = PromptTemplate.from_template( | |
( | |
"[INST] {system_message}" | |
"\nCurrent Conversation:\n{chat_history}\n\n" | |
"\nUser: {user_text}.\n [/INST]" | |
"\nAI:" | |
) | |
) | |
# Make the chain and bind the prompt | |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
# Generate the response | |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history)) | |
response = response.split("AI:")[-1] | |
# Update the chat history | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': response}) | |
return response, chat_history | |
# Chat interface | |
chat_interface = st.container(border=True) | |
with chat_interface: | |
output_container = st.container() | |
st.session_state.user_text = st.chat_input(placeholder="Poser votre question.") | |
# Display chat messages | |
with output_container: | |
# For every message in the history | |
for message in st.session_state.chat_history: | |
# Skip the system message | |
if message['role'] == 'system': | |
continue | |
# Display the chat message using the correct avatar | |
with st.chat_message(message['role'], | |
avatar=st.session_state['avatars'][message['role']]): | |
st.markdown(message['content']) | |
# When the user enter new text: | |
if st.session_state.user_text: | |
# Display the user's new message immediately | |
with st.chat_message("user", | |
avatar=st.session_state.avatars['user']): | |
st.markdown(st.session_state.user_text) | |
# Display a spinner status bar while waiting for the response | |
with st.chat_message("assistant", | |
avatar=st.session_state.avatars['assistant']): | |
with st.spinner("Thinking..."): | |
# Call the Inference API with the system_prompt, user text, and history | |
response, st.session_state.chat_history = get_response( | |
system_message=st.session_state.system_message, | |
user_text=st.session_state.user_text, | |
chat_history=st.session_state.chat_history, | |
max_new_tokens=st.session_state.max_response_length, | |
) | |
st.markdown(response) |