Spaces:
Sleeping
Sleeping
Commit
·
0e8f4b9
1
Parent(s):
2b8f512
feat: apply mask on top of the image
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio
|
2 |
import numpy
|
3 |
|
|
|
4 |
from pathlib import Path
|
5 |
from PIL import Image
|
6 |
|
@@ -14,29 +15,24 @@ TEST_IMAGES_PATH = Path('.') / 'test'
|
|
14 |
def preprocess_mask(file_name):
|
15 |
"""Ensures masks are in grayscale format and removes transparency."""
|
16 |
mask_path = Path(
|
17 |
-
'/kaggle/
|
18 |
mask = Image.open(mask_path)
|
19 |
|
20 |
-
# Convert palette-based images to RGBA first to ensure proper color interpretation
|
21 |
if mask.mode == 'P':
|
22 |
mask = mask.convert('RGBA')
|
23 |
|
24 |
-
# Convert any non-RGBA images to RGBA
|
25 |
if mask.mode != 'RGBA':
|
26 |
mask = mask.convert('RGBA')
|
27 |
|
28 |
mask_data = mask.getdata()
|
29 |
|
30 |
-
# Replace fully transparent pixels with black (or another valid label)
|
31 |
new_mask_data = [
|
32 |
-
# Ensure full opacity in new mask
|
33 |
(r, g, b, 255) if a > 0 else (0, 0, 0, 255)
|
34 |
for r, g, b, a in mask_data
|
35 |
]
|
36 |
|
37 |
mask.putdata(new_mask_data)
|
38 |
|
39 |
-
# Convert to grayscale after handling transparency
|
40 |
return PILMask.create(mask.convert('L'))
|
41 |
|
42 |
|
@@ -47,17 +43,27 @@ def segment_image(image):
|
|
47 |
image = PILImage.create(image)
|
48 |
prediction, _, _ = LEARNER.predict(image)
|
49 |
|
|
|
|
|
|
|
50 |
prediction_array = numpy.array(prediction, dtype=numpy.uint8)
|
51 |
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
return
|
56 |
|
57 |
|
58 |
demo = gradio.Interface(
|
59 |
segment_image,
|
60 |
-
|
61 |
outputs=gradio.Image(type='numpy'),
|
62 |
examples=[str(image) for image in TEST_IMAGES_PATH.iterdir()]
|
63 |
)
|
|
|
1 |
import gradio
|
2 |
import numpy
|
3 |
|
4 |
+
from matplotlib import _cm
|
5 |
from pathlib import Path
|
6 |
from PIL import Image
|
7 |
|
|
|
15 |
def preprocess_mask(file_name):
|
16 |
"""Ensures masks are in grayscale format and removes transparency."""
|
17 |
mask_path = Path(
|
18 |
+
'/kaggle/inumpyut/car-segmentation/car-segmentation/masks') / file_name.name
|
19 |
mask = Image.open(mask_path)
|
20 |
|
|
|
21 |
if mask.mode == 'P':
|
22 |
mask = mask.convert('RGBA')
|
23 |
|
|
|
24 |
if mask.mode != 'RGBA':
|
25 |
mask = mask.convert('RGBA')
|
26 |
|
27 |
mask_data = mask.getdata()
|
28 |
|
|
|
29 |
new_mask_data = [
|
|
|
30 |
(r, g, b, 255) if a > 0 else (0, 0, 0, 255)
|
31 |
for r, g, b, a in mask_data
|
32 |
]
|
33 |
|
34 |
mask.putdata(new_mask_data)
|
35 |
|
|
|
36 |
return PILMask.create(mask.convert('L'))
|
37 |
|
38 |
|
|
|
43 |
image = PILImage.create(image)
|
44 |
prediction, _, _ = LEARNER.predict(image)
|
45 |
|
46 |
+
print("Prediction shape:", prediction.shape)
|
47 |
+
print("Unique values:", numpy.unique(prediction))
|
48 |
+
|
49 |
prediction_array = numpy.array(prediction, dtype=numpy.uint8)
|
50 |
|
51 |
+
colormap = _cm.get_cmap('jet', numpy.max(
|
52 |
+
prediction_array) + 1)
|
53 |
+
colored_mask = colormap(prediction_array)[:, :, :3]
|
54 |
+
|
55 |
+
image_array = numpy.array(image).astype(numpy.float32) / 255.0
|
56 |
+
|
57 |
+
overlay = (image_array * 0.7) + (colored_mask * 0.3) # Adjust transparency
|
58 |
+
|
59 |
+
overlay = (overlay * 255).astype(numpy.uint8)
|
60 |
|
61 |
+
return overlay
|
62 |
|
63 |
|
64 |
demo = gradio.Interface(
|
65 |
segment_image,
|
66 |
+
inumpyuts=gradio.Image(type='pil'),
|
67 |
outputs=gradio.Image(type='numpy'),
|
68 |
examples=[str(image) for image in TEST_IMAGES_PATH.iterdir()]
|
69 |
)
|