makeavid-sd-jax / makeavid_sd /flax_impl /flax_unet_pseudo3d_blocks.py
lopho's picture
forgot about the nested package structure
b2f876f
raw
history blame contribute delete
9.51 kB
from typing import Tuple
import jax
import jax.numpy as jnp
import flax.linen as nn
from .flax_attention_pseudo3d import TransformerPseudo3DModel
from .flax_resnet_pseudo3d import ResnetBlockPseudo3D, DownsamplePseudo3D, UpsamplePseudo3D
class UNetMidBlockPseudo3DCrossAttn(nn.Module):
in_channels: int
num_layers: int = 1
attn_num_head_channels: int = 1
use_memory_efficient_attention: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
resnets = [
ResnetBlockPseudo3D(
in_channels = self.in_channels,
out_channels = self.in_channels,
dtype = self.dtype
)
]
attentions = []
for _ in range(self.num_layers):
attn_block = TransformerPseudo3DModel(
in_channels = self.in_channels,
num_attention_heads = self.attn_num_head_channels,
attention_head_dim = self.in_channels // self.attn_num_head_channels,
num_layers = 1,
use_memory_efficient_attention = self.use_memory_efficient_attention,
dtype = self.dtype
)
attentions.append(attn_block)
res_block = ResnetBlockPseudo3D(
in_channels = self.in_channels,
out_channels = self.in_channels,
dtype = self.dtype
)
resnets.append(res_block)
self.attentions = attentions
self.resnets = resnets
def __call__(self,
hidden_states: jax.Array,
temb: jax.Array,
encoder_hidden_states = jax.Array
) -> jax.Array:
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(hidden_states, encoder_hidden_states)
hidden_states = resnet(hidden_states, temb)
return hidden_states
class CrossAttnDownBlockPseudo3D(nn.Module):
in_channels: int
out_channels: int
num_layers: int = 1
attn_num_head_channels: int = 1
add_downsample: bool = True
use_memory_efficient_attention: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
attentions = []
resnets = []
for i in range(self.num_layers):
in_channels = self.in_channels if i == 0 else self.out_channels
res_block = ResnetBlockPseudo3D(
in_channels = in_channels,
out_channels = self.out_channels,
dtype = self.dtype
)
resnets.append(res_block)
attn_block = TransformerPseudo3DModel(
in_channels = self.out_channels,
num_attention_heads = self.attn_num_head_channels,
attention_head_dim = self.out_channels // self.attn_num_head_channels,
num_layers = 1,
use_memory_efficient_attention = self.use_memory_efficient_attention,
dtype = self.dtype
)
attentions.append(attn_block)
self.resnets = resnets
self.attentions = attentions
if self.add_downsample:
self.downsamplers_0 = DownsamplePseudo3D(
out_channels = self.out_channels,
dtype = self.dtype
)
else:
self.downsamplers_0 = None
def __call__(self,
hidden_states: jax.Array,
temb: jax.Array,
encoder_hidden_states: jax.Array
) -> Tuple[jax.Array, jax.Array]:
output_states = ()
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, encoder_hidden_states)
output_states += (hidden_states, )
if self.add_downsample:
hidden_states = self.downsamplers_0(hidden_states)
output_states += (hidden_states, )
return hidden_states, output_states
class DownBlockPseudo3D(nn.Module):
in_channels: int
out_channels: int
num_layers: int = 1
add_downsample: bool = True
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
resnets = []
for i in range(self.num_layers):
in_channels = self.in_channels if i == 0 else self.out_channels
res_block = ResnetBlockPseudo3D(
in_channels = in_channels,
out_channels = self.out_channels,
dtype = self.dtype
)
resnets.append(res_block)
self.resnets = resnets
if self.add_downsample:
self.downsamplers_0 = DownsamplePseudo3D(
out_channels = self.out_channels,
dtype = self.dtype
)
else:
self.downsamplers_0 = None
def __call__(self,
hidden_states: jax.Array,
temb: jax.Array
) -> Tuple[jax.Array, jax.Array]:
output_states = ()
for resnet in self.resnets:
hidden_states = resnet(hidden_states, temb)
output_states += (hidden_states, )
if self.add_downsample:
hidden_states = self.downsamplers_0(hidden_states)
output_states += (hidden_states, )
return hidden_states, output_states
class CrossAttnUpBlockPseudo3D(nn.Module):
in_channels: int
out_channels: int
prev_output_channels: int
num_layers: int = 1
attn_num_head_channels: int = 1
add_upsample: bool = True
use_memory_efficient_attention: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
resnets = []
attentions = []
for i in range(self.num_layers):
res_skip_channels = self.in_channels if (i == self.num_layers -1) else self.out_channels
resnet_in_channels = self.prev_output_channels if i == 0 else self.out_channels
res_block = ResnetBlockPseudo3D(
in_channels = resnet_in_channels + res_skip_channels,
out_channels = self.out_channels,
dtype = self.dtype
)
resnets.append(res_block)
attn_block = TransformerPseudo3DModel(
in_channels = self.out_channels,
num_attention_heads = self.attn_num_head_channels,
attention_head_dim = self.out_channels // self.attn_num_head_channels,
num_layers = 1,
use_memory_efficient_attention = self.use_memory_efficient_attention,
dtype = self.dtype
)
attentions.append(attn_block)
self.resnets = resnets
self.attentions = attentions
if self.add_upsample:
self.upsamplers_0 = UpsamplePseudo3D(
out_channels = self.out_channels,
dtype = self.dtype
)
else:
self.upsamplers_0 = None
def __call__(self,
hidden_states: jax.Array,
res_hidden_states_tuple: Tuple[jax.Array, ...],
temb: jax.Array,
encoder_hidden_states: jax.Array
) -> jax.Array:
for resnet, attn in zip(self.resnets, self.attentions):
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis = -1)
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, encoder_hidden_states)
if self.add_upsample:
hidden_states = self.upsamplers_0(hidden_states)
return hidden_states
class UpBlockPseudo3D(nn.Module):
in_channels: int
out_channels: int
prev_output_channels: int
num_layers: int = 1
add_upsample: bool = True
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
resnets = []
for i in range(self.num_layers):
res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
resnet_in_channels = self.prev_output_channels if i == 0 else self.out_channels
res_block = ResnetBlockPseudo3D(
in_channels = resnet_in_channels + res_skip_channels,
out_channels = self.out_channels,
dtype = self.dtype
)
resnets.append(res_block)
self.resnets = resnets
if self.add_upsample:
self.upsamplers_0 = UpsamplePseudo3D(
out_channels = self.out_channels,
dtype = self.dtype
)
else:
self.upsamplers_0 = None
def __call__(self,
hidden_states: jax.Array,
res_hidden_states_tuple: Tuple[jax.Array, ...],
temb: jax.Array
) -> jax.Array:
for resnet in self.resnets:
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = jnp.concatenate([hidden_states, res_hidden_states], axis = -1)
hidden_states = resnet(hidden_states, temb)
if self.add_upsample:
hidden_states = self.upsamplers_0(hidden_states)
return hidden_states