Spaces:
Sleeping
Sleeping
import gradio as gr | |
import onnxruntime as ort | |
import numpy as np | |
from PIL import Image | |
import json | |
from huggingface_hub import hf_hub_download | |
# Load model and metadata at startup (same as before) | |
MODEL_REPO = "AngelBottomless/camie-tagger-onnxruntime" | |
MODEL_FILE = "camie_tagger_initial.onnx" | |
META_FILE = "metadata.json" | |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE, cache_dir=".") | |
meta_path = hf_hub_download(repo_id=MODEL_REPO, filename=META_FILE, cache_dir=".") | |
session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"]) | |
metadata = json.load(open(meta_path, "r", encoding="utf-8")) | |
# Preprocessing function (same as before) | |
def preprocess_image(pil_image: Image.Image) -> np.ndarray: | |
img = pil_image.convert("RGB").resize((512, 512)) | |
arr = np.array(img).astype(np.float32) / 255.0 | |
arr = np.transpose(arr, (2, 0, 1)) | |
arr = np.expand_dims(arr, 0) | |
return arr | |
# Inference function with output format option | |
def tag_image(pil_image: Image.Image, output_format: str) -> str: | |
# Run model inference | |
input_tensor = preprocess_image(pil_image) | |
input_name = session.get_inputs()[0].name | |
initial_logits, refined_logits = session.run(None, {input_name: input_tensor}) | |
probs = 1 / (1 + np.exp(-refined_logits)) | |
probs = probs[0] | |
idx_to_tag = metadata["idx_to_tag"] | |
tag_to_category = metadata.get("tag_to_category", {}) | |
category_thresholds = metadata.get("category_thresholds", {}) | |
default_threshold = 0.325 | |
results_by_cat = {} # to store tags per category (for verbose output) | |
prompt_tags = [] # to store tags for prompt-style output | |
# Collect tags above thresholds | |
for idx, prob in enumerate(probs): | |
tag = idx_to_tag[str(idx)] | |
cat = tag_to_category.get(tag, "unknown") | |
thresh = category_thresholds.get(cat, default_threshold) | |
if float(prob) >= thresh: | |
# add to category dictionary | |
results_by_cat.setdefault(cat, []).append((tag, float(prob))) | |
# add to prompt list | |
prompt_tags.append(tag.replace("_", " ")) | |
if output_format == "Prompt-style Tags": | |
if not prompt_tags: | |
return "No tags predicted." | |
# Join tags with commas (sorted by probability for relevance) | |
# Sort prompt_tags by probability from results_by_cat (for better prompts ordering) | |
prompt_tags.sort(key=lambda t: max([p for (tg, p) in results_by_cat[tag_to_category.get(t.replace(' ', '_'), 'unknown')] if tg == t.replace(' ', '_')]), reverse=True) | |
return ", ".join(prompt_tags) | |
else: # Detailed output | |
if not results_by_cat: | |
return "No tags predicted for this image." | |
lines = [] | |
lines.append("**Predicted Tags by Category:** \n") # (Markdown newline: two spaces + newline) | |
for cat, tag_list in results_by_cat.items(): | |
# sort tags in this category by probability descending | |
tag_list.sort(key=lambda x: x[1], reverse=True) | |
lines.append(f"**Category: {cat}** β {len(tag_list)} tags") | |
for tag, prob in tag_list: | |
tag_pretty = tag.replace("_", " ") | |
lines.append(f"- {tag_pretty} (Prob: {prob:.3f})") | |
lines.append("") # blank line between categories | |
return "\n".join(lines) | |
# Build the Gradio Blocks UI | |
demo = gr.Blocks(theme=gr.themes.Soft()) # using a built-in theme for nicer styling | |
with demo: | |
# Header Section | |
gr.Markdown("# π·οΈ Camie Tagger β Anime Image Tagging\nThis demo uses an ONNX model of Camie Tagger to label anime illustrations with tags. Upload an image and click **Tag Image** to see predictions.") | |
gr.Markdown("*(Note: The model will predict a large number of tags across categories like character, general, artist, etc. You can choose a concise prompt-style output or a detailed category-wise breakdown.)*") | |
# Input/Output Section | |
with gr.Row(): | |
# Left column: Image input and format selection | |
with gr.Column(): | |
image_in = gr.Image(type="pil", label="Input Image") | |
format_choice = gr.Radio(choices=["Prompt-style Tags", "Detailed Output"], value="Prompt-style Tags", label="Output Format") | |
tag_button = gr.Button("π Tag Image") | |
# Right column: Output display | |
with gr.Column(): | |
output_box = gr.Markdown("") # will display the result in Markdown (supports bold, lists, etc.) | |
# Example images (if available in the repo) | |
gr.Examples( | |
examples=[["example1.jpg"], ["example2.png"]], # Example file paths (ensure these exist in the Space) | |
inputs=image_in, | |
outputs=output_box, | |
fn=tag_image, | |
cache_examples=True | |
) | |
# Link the button click to the function | |
tag_button.click(fn=tag_image, inputs=[image_in, format_choice], outputs=output_box) | |
# Footer/Info | |
gr.Markdown("----\n**Model:** [Camie Tagger ONNX](https://huggingface.co./AngelBottomless/camie-tagger-onnxruntime) β’ **Base Model:** Camais03/camie-tagger (61% F1 on 70k tags) β’ **ONNX Runtime:** for efficient CPU inference​:contentReference[oaicite:6]{index=6} β’ *Demo built with Gradio Blocks.*") | |
# Launch the app (automatically handled in Spaces) | |
demo.launch() | |