import gradio as gr from PIL import Image, ImageDraw, ImageFont import numpy as np import scipy.io.wavfile as wavfile from transformers import pipeline # Load pipelines narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") # Function to apply Non-Maximum Suppression (NMS) def compute_iou(box1, boxes): x1 = np.maximum(box1['xmin'], boxes[:, 0]) y1 = np.maximum(box1['ymin'], boxes[:, 1]) x2 = np.minimum(box1['xmax'], boxes[:, 2]) y2 = np.minimum(box1['ymax'], boxes[:, 3]) intersection = np.maximum(0, x2 - x1) * np.maximum(0, y2 - y1) box1_area = (box1['xmax'] - box1['xmin']) * (box1['ymax'] - box1['ymin']) boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) union = box1_area + boxes_area - intersection return intersection / union def nms(detections, iou_threshold=0.5): if len(detections) == 0: return [] boxes = np.array([[d['box']['xmin'], d['box']['ymin'], d['box']['xmax'], d['box']['ymax']] for d in detections]) scores = np.array([d['score'] for d in detections]) indices = np.argsort(scores)[::-1] keep = [] while len(indices) > 0: current = indices[0] keep.append(current) rest = indices[1:] ious = compute_iou({ 'xmin': boxes[current, 0], 'ymin': boxes[current, 1], 'xmax': boxes[current, 2], 'ymax': boxes[current, 3] }, boxes[rest]) indices = rest[np.where(ious < iou_threshold)[0]] return [detections[i] for i in keep] # Function to generate audio from text def generate_audio(text): narrated_text = narrator(text) wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) return "output.wav" # Function to read and summarize detected objects def read_objects(detection_objects): object_counts = {} for detection in detection_objects: label = detection['label'] object_counts[label] = object_counts.get(label, 0) + 1 response = "This picture contains" labels = list(object_counts.keys()) for i, label in enumerate(labels): response += f" {object_counts[label]} {label}" if object_counts[label] > 1: response += "s" if i < len(labels) - 2: response += "," elif i == len(labels) - 2: response += " and" response += "." return response # Function to draw bounding boxes on the image def draw_bounding_boxes(image, detections): draw_image = image.copy() draw = ImageDraw.Draw(draw_image) font = ImageFont.load_default() for detection in detections: box = detection['box'] xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax'] draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) label = detection['label'] score = detection['score'] text = f"{label}: {score:.2f}" text_size = draw.textbbox((xmin, ymin), text, font=font) draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") draw.text((xmin, ymin), text, fill="white", font=font) return draw_image # Main function to process the image def detect_object(image): detections = object_detector(image) # Apply confidence threshold and NMS confidence_threshold = 0.5 filtered_detections = [d for d in detections if d['score'] > confidence_threshold] filtered_detections = nms(filtered_detections) processed_image = draw_bounding_boxes(image, filtered_detections) description_text = read_objects(filtered_detections) processed_audio = generate_audio(description_text) return processed_image, processed_audio description_text = """ Upload an image to detect objects and hear a natural language description. ### Credits: Developed by Taizun S """ # Google Analytics script ga_script = """ """ # Use Gradio Blocks to organize the layout with gr.Blocks() as demo: gr.HTML(ga_script) # Injecting Google Analytics script gr.Markdown(description_text) # Adding the description as Markdown # Define the Interface components within Blocks gr.Interface( fn=detect_object, inputs=gr.Image(label="Upload an Image", type="pil"), outputs=[ gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio") ], title="Multi-Object Detection with Audio Narration", ) # Launch the Blocks interface demo.launch()