import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import scipy.io.wavfile as wavfile
from transformers import pipeline
# Load pipelines
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs")
object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
# Function to apply Non-Maximum Suppression (NMS)
def compute_iou(box1, boxes):
x1 = np.maximum(box1['xmin'], boxes[:, 0])
y1 = np.maximum(box1['ymin'], boxes[:, 1])
x2 = np.minimum(box1['xmax'], boxes[:, 2])
y2 = np.minimum(box1['ymax'], boxes[:, 3])
intersection = np.maximum(0, x2 - x1) * np.maximum(0, y2 - y1)
box1_area = (box1['xmax'] - box1['xmin']) * (box1['ymax'] - box1['ymin'])
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
union = box1_area + boxes_area - intersection
return intersection / union
def nms(detections, iou_threshold=0.5):
if len(detections) == 0:
return []
boxes = np.array([[d['box']['xmin'], d['box']['ymin'], d['box']['xmax'], d['box']['ymax']] for d in detections])
scores = np.array([d['score'] for d in detections])
indices = np.argsort(scores)[::-1]
keep = []
while len(indices) > 0:
current = indices[0]
keep.append(current)
rest = indices[1:]
ious = compute_iou({
'xmin': boxes[current, 0],
'ymin': boxes[current, 1],
'xmax': boxes[current, 2],
'ymax': boxes[current, 3]
}, boxes[rest])
indices = rest[np.where(ious < iou_threshold)[0]]
return [detections[i] for i in keep]
# Function to generate audio from text
def generate_audio(text):
narrated_text = narrator(text)
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0])
return "output.wav"
# Function to read and summarize detected objects
def read_objects(detection_objects):
object_counts = {}
for detection in detection_objects:
label = detection['label']
object_counts[label] = object_counts.get(label, 0) + 1
response = "This picture contains"
labels = list(object_counts.keys())
for i, label in enumerate(labels):
response += f" {object_counts[label]} {label}"
if object_counts[label] > 1:
response += "s"
if i < len(labels) - 2:
response += ","
elif i == len(labels) - 2:
response += " and"
response += "."
return response
# Function to draw bounding boxes on the image
def draw_bounding_boxes(image, detections):
draw_image = image.copy()
draw = ImageDraw.Draw(draw_image)
font = ImageFont.load_default()
for detection in detections:
box = detection['box']
xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax']
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
label = detection['label']
score = detection['score']
text = f"{label}: {score:.2f}"
text_size = draw.textbbox((xmin, ymin), text, font=font)
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
draw.text((xmin, ymin), text, fill="white", font=font)
return draw_image
# Main function to process the image
def detect_object(image):
detections = object_detector(image)
# Apply confidence threshold and NMS
confidence_threshold = 0.5
filtered_detections = [d for d in detections if d['score'] > confidence_threshold]
filtered_detections = nms(filtered_detections)
processed_image = draw_bounding_boxes(image, filtered_detections)
description_text = read_objects(filtered_detections)
processed_audio = generate_audio(description_text)
return processed_image, processed_audio
description_text = """
Upload an image to detect objects and hear a natural language description.
### Credits:
Developed by Taizun S
"""
# Google Analytics script
ga_script = """
"""
# Use Gradio Blocks to organize the layout
with gr.Blocks() as demo:
gr.HTML(ga_script) # Injecting Google Analytics script
gr.Markdown(description_text) # Adding the description as Markdown
# Define the Interface components within Blocks
gr.Interface(
fn=detect_object,
inputs=gr.Image(label="Upload an Image", type="pil"),
outputs=[
gr.Image(label="Processed Image", type="pil"),
gr.Audio(label="Generated Audio")
],
title="Multi-Object Detection with Audio Narration",
)
# Launch the Blocks interface
demo.launch()