Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import scipy.io.wavfile as wavfile
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
# Set device for processing
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# Load models
|
11 |
+
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device)
|
12 |
+
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs")
|
13 |
+
|
14 |
+
def generate_audio(text):
|
15 |
+
"""Generate audio narration from text."""
|
16 |
+
narrated_text = narrator(text)
|
17 |
+
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0])
|
18 |
+
return "output.wav"
|
19 |
+
|
20 |
+
def caption_my_image(pil_image):
|
21 |
+
"""Generate caption for the image and convert it to audio."""
|
22 |
+
semantics = caption_image(images=pil_image)[0]['generated_text']
|
23 |
+
return generate_audio(semantics)
|
24 |
+
|
25 |
+
# Define the Gradio interface
|
26 |
+
demo = gr.Interface(
|
27 |
+
fn=caption_my_image,
|
28 |
+
inputs=[gr.Image(label="Upload Your Image", type="pil")],
|
29 |
+
outputs=[gr.Audio(label="Generated Audio Caption")],
|
30 |
+
title="Image Captioning and Narration",
|
31 |
+
description=(
|
32 |
+
"Upload an image to generate a descriptive caption and listen to its narration. "
|
33 |
+
"This application is powered by AI tools and brought to you by **Taizun**."
|
34 |
+
),
|
35 |
+
theme="compact" # Use a minimalistic theme
|
36 |
+
)
|
37 |
+
|
38 |
+
# Launch the application
|
39 |
+
demo.launch()
|