import streamlit as st import pandas as pd import re import io from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer # Download NLTK resources nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') # Initialize lemmatizer and stopwords lemmatizer = WordNetLemmatizer() stop_words = set(stopwords.words('english')) # Load fine-tuned model and tokenizer model_name = "TAgroup5/news-classification-model" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize pipelines text_classification_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer) qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer) # Streamlit App st.title("News Classification and Q&A") ## ====================== Component 1: News Classification ====================== ## st.header("Classify News Articles") st.markdown("Upload a CSV file with a 'content' column to classify news into categories.") uploaded_file = st.file_uploader("Choose a CSV file", type="csv") if uploaded_file is not None: try: df = pd.read_csv(uploaded_file, encoding="utf-8") # Handle encoding issues except UnicodeDecodeError: df = pd.read_csv(uploaded_file, encoding="ISO-8859-1") if 'content' not in df.columns: st.error("Error: The uploaded CSV must contain a 'content' column.") else: st.write("Preview of uploaded data:") st.dataframe(df.head()) # Preprocessing function def preprocess_text(text): text = text.lower() # Convert to lowercase text = re.sub(r'[^a-z\s]', '', text) # Remove special characters & numbers tokens = word_tokenize(text) # Tokenization tokens = [word for word in tokens if word not in stop_words] # Remove stopwords tokens = [lemmatizer.lemmatize(word) for word in tokens] # Lemmatization return " ".join(tokens) # Apply preprocessing and classification df['processed_content'] = df['content'].apply(preprocess_text) df['class'] = df['processed_content'].apply(lambda x: text_classification_pipeline(x)[0]['label'] if x.strip() else "Unknown") # Show results st.write("Classification Results:") st.dataframe(df[['content', 'class']]) # Provide CSV download output = io.BytesIO() df.to_csv(output, index=False, encoding="utf-8-sig") st.download_button(label="Download classified news", data=output.getvalue(), file_name="output.csv", mime="text/csv") ## ====================== Component 2: Q&A ====================== ## st.header("Ask a Question About the News") st.markdown("Enter a question and provide a news article to get an answer.") question = st.text_input("Ask a question:") context = st.text_area("Provide the news article or content for the Q&A:", height=150) if question and context.strip(): result = qa_pipeline(question=question, context=context) # Check if the result contains an answer if 'answer' in result and result['answer']: st.write("Answer:", result['answer']) else: st.write("No answer found in the provided content.")