SyedHutter's picture
Smartness increased to max_new_tokens=50
007b159 verified
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any
from pymongo import MongoClient
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import spacy
import os
import logging
import re
import torch
import random
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = FastAPI()
# MongoDB Setup
connection_string = os.getenv("MONGO_URI", "mongodb+srv://clician:[email protected]/?retryWrites=true&w=majority&appName=Hutterdev")
client = MongoClient(connection_string)
db = client["test"]
products_collection = db["products"]
# BlenderBot Setup
model_repo = "SyedHutter/blenderbot_model"
model_subfolder = "blenderbot_model"
model_dir = "/home/user/app/blenderbot_model"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
if not os.path.exists(model_dir):
logger.info(f"Downloading {model_repo}/{model_subfolder} to {model_dir}...")
tokenizer = BlenderbotTokenizer.from_pretrained(model_repo, subfolder=model_subfolder)
model = BlenderbotForConditionalGeneration.from_pretrained(model_repo, subfolder=model_subfolder)
os.makedirs(model_dir, exist_ok=True)
tokenizer.save_pretrained(model_dir)
model.save_pretrained(model_dir)
logger.info("Model download complete.")
else:
logger.info(f"Loading pre-existing model from {model_dir}.")
tokenizer = BlenderbotTokenizer.from_pretrained(model_dir)
model = BlenderbotForConditionalGeneration.from_pretrained(model_dir).to(device)
model.eval()
# Static Context
context_msg = "I am Hutter, your shopping guide for Hutter Products GmbH, here to help you find sustainable products."
# spaCy Setup
spacy_model_path = "/home/user/app/en_core_web_sm-3.8.0"
nlp = spacy.load(spacy_model_path)
# Pydantic Models
class PromptRequest(BaseModel):
input_text: str
conversation_history: List[str] = []
class CombinedResponse(BaseModel):
ner: Dict[str, Any]
qa: Dict[str, Any]
products_matched: List[Dict[str, Any]]
# Helper Functions
def extract_keywords(text: str) -> List[str]:
doc = nlp(text)
keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
return list(set(keywords))
def detect_intent(text: str) -> str:
doc = nlp(text.lower())
text_lower = text.lower()
if any(token.text in ["buy", "shop", "find", "recommend", "product", "products", "item", "store", "catalog"] for token in doc) or "what" in text_lower.split()[:2]:
return "recommend_product"
elif any(token.text in ["company", "who", "do"] for token in doc):
return "company_info"
elif "name" in text_lower or "yourself" in text_lower or ("you" in doc and "about" in doc):
return "ask_name"
elif re.search(r"\d+\s*[\+\-\*/]\s*\d+", text_lower):
return "math_query"
return "chat"
def search_products_by_keywords(keywords: List[str]) -> List[Dict[str, Any]]:
if not keywords:
return []
query = {"$or": [{"name": {"$regex": f"\\b{keyword}\\b", "$options": "i"}} for keyword in keywords]}
matched_products = [
{
"id": str(p["_id"]),
"name": p.get("name", "Unknown"),
"skuNumber": p.get("skuNumber", "N/A"),
"description": p.get("description", "No description available")
}
for p in products_collection.find(query)
]
return matched_products
def get_product_context(products: List[Dict]) -> str:
if not products:
return ""
product_str = "Products: " + ", ".join([f"'{p['name']}' - {p['description']}" for p in products[:2]])
return product_str
def format_response(response: str, products: List[Dict], intent: str, input_text: str, history: List[str]) -> str:
# Base response is BlenderBot’s output; adjust based on intent
base_response = response if response else "I’m here to help—what’s on your mind?"
if intent == "recommend_product":
if products:
product = products[0]
return f"{base_response} Speaking of sustainable products, check out our '{product['name']}'—it’s {product['description'].lower()}."
prompts = [
f"{base_response} What sustainable items are you looking for today?",
f"{base_response} Any specific eco-friendly products you’re curious about?",
]
return random.choice(prompts)
elif intent == "company_info":
return f"{base_response} I’m with Hutter Products GmbH—we focus on sustainable items like recycled textiles and ocean plastic goods."
elif intent == "ask_name":
return f"{base_response} I’m Hutter, your shopping guide for Hutter Products GmbH, here to assist with sustainable products."
elif intent == "math_query":
match = re.search(r"(\d+)\s*([\+\-\*/])\s*(\d+)", input_text.lower())
if match:
num1, op, num2 = int(match.group(1)), match.group(2), int(match.group(3))
if op == "+": return f"{base_response} By the way, {num1} + {num2} = {num1 + num2}."
elif op == "-": return f"{base_response} Also, {num1} - {num2} = {num1 - num2}."
elif op == "*": return f"{base_response} Oh, and {num1} * {num2} = {num1 * num2}."
elif op == "/": return f"{base_response} Plus, {num1} / {num2} = {num1 / num2}." if num2 != 0 else f"{base_response} Can’t divide by zero, though!"
return f"{base_response} I can help with math—try something like '2 + 2'."
elif intent == "chat":
if "yes" in input_text.lower() and history and any(word in history[-1].lower() for word in ["hat", "product", "store"]):
if products:
product = products[0]
return f"{base_response} Great! How about our '{product['name']}'? It’s {product['description'].lower()}."
return f"{base_response} Want me to suggest some sustainable items?"
return base_response # Let BlenderBot shine for casual chat
return base_response # Fallback
# Endpoints
@app.get("/")
async def root():
return {"message": "Welcome to the NER and Chat API!"}
@app.post("/process/", response_model=CombinedResponse)
async def process_prompt(request: PromptRequest):
try:
logger.info(f"Processing request: {request.input_text}")
input_text = request.input_text
history = request.conversation_history[-1:] if request.conversation_history else []
intent = detect_intent(input_text)
keywords = extract_keywords(input_text)
logger.info(f"Intent: {intent}, Keywords: {keywords}")
products = search_products_by_keywords(keywords)
product_context = get_product_context(products)
logger.info(f"Products matched: {len(products)}")
history_str = " || ".join(history)
full_input = f"{context_msg} || {product_context} || {input_text}" if product_context else f"{context_msg} || {input_text}"
logger.info(f"Full input to model: {full_input}")
logger.info("Tokenizing input...")
inputs = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=64).to(device)
logger.info("Input tokenized successfully.")
logger.info("Generating model response...")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=50,
do_sample=True,
top_p=0.95,
temperature=0.8,
no_repeat_ngram_size=2
)
logger.info("Model generation complete.")
logger.info("Decoding model output...")
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Model response: {response}")
enhanced_response = format_response(response, products, intent, input_text, request.conversation_history)
qa_response = {
"question": input_text,
"answer": enhanced_response,
"score": 1.0
}
logger.info("Returning response...")
return {
"ner": {"extracted_keywords": keywords},
"qa": qa_response,
"products_matched": products
}
except Exception as e:
logger.error(f"Error processing request: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Oops, something went wrong: {str(e)}")
@app.on_event("startup")
async def startup_event():
logger.info("API is running with BlenderBot-400M-distill, connected to MongoDB.")
@app.on_event("shutdown")
def shutdown_event():
client.close()