SyedHutter's picture
Updated with Content msg, product recommendation and history information2
9965e63 verified
raw
history blame
8.4 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any
from pymongo import MongoClient
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import spacy
import os
import logging
import re
# Set up logging with detailed output
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = FastAPI()
# MongoDB Setup
connection_string = os.getenv("MONGO_URI", "mongodb+srv://clician:[email protected]/?retryWrites=true&w=majority&appName=Hutterdev")
client = MongoClient(connection_string)
db = client["test"]
products_collection = db["products"]
# BlenderBot Setup
model_repo = "SyedHutter/blenderbot_model"
model_subfolder = "blenderbot_model"
model_dir = "/home/user/app/blenderbot_model"
if not os.path.exists(model_dir):
logger.info(f"Downloading {model_repo}/{model_subfolder} to {model_dir}...")
tokenizer = BlenderbotTokenizer.from_pretrained(model_repo, subfolder=model_subfolder)
model = BlenderbotForConditionalGeneration.from_pretrained(model_repo, subfolder=model_subfolder)
os.makedirs(model_dir, exist_ok=True)
tokenizer.save_pretrained(model_dir)
model.save_pretrained(model_dir)
logger.info("Model download complete.")
else:
logger.info(f"Loading pre-existing model from {model_dir}.")
tokenizer = BlenderbotTokenizer.from_pretrained(model_dir)
model = BlenderbotForConditionalGeneration.from_pretrained(model_dir)
# Static Context
context_msg = "I am Hutter, your shopping guide for Hutter Products GmbH. I’m here to help you explore our innovative and sustainable product catalog, featuring eco-friendly items like recycled textiles and ocean plastic goods. Let me assist you in finding the perfect sustainable solution!"
# spaCy Setup
spacy_model_path = "/home/user/app/en_core_web_sm-3.8.0"
nlp = spacy.load(spacy_model_path)
# Pydantic Models
class PromptRequest(BaseModel):
input_text: str
conversation_history: List[str] = []
class CombinedResponse(BaseModel):
ner: Dict[str, Any]
qa: Dict[str, Any]
products_matched: List[Dict[str, Any]]
# Helper Functions
def extract_keywords(text: str) -> List[str]:
doc = nlp(text)
keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
return list(set(keywords))
def detect_intent(text: str) -> str:
doc = nlp(text.lower())
text_lower = text.lower()
# General product-related intent based on shopping context
if any(token.text in ["buy", "shop", "find", "recommend", "product", "products", "item", "store", "catalog"] for token in doc) or "what" in text_lower.split()[:2]:
return "recommend_product"
elif any(token.text in ["company", "who", "do"] for token in doc):
return "company_info"
elif "name" in text_lower:
return "ask_name"
elif re.search(r"\d+\s*[\+\-\*/]\s*\d+", text_lower):
return "math_query"
return "recommend_product" # Default to product focus for scalability
def search_products_by_keywords(keywords: List[str]) -> List[Dict[str, Any]]:
if not keywords:
logger.info("No keywords provided, returning empty product list.")
return []
query = {"$or": [{"name": {"$regex": f"\\b{keyword}\\b", "$options": "i"}} for keyword in keywords]}
matched_products = [
{
"id": str(p["_id"]),
"name": p.get("name", "Unknown"),
"skuNumber": p.get("skuNumber", "N/A"),
"description": p.get("description", "No description available")
}
for p in products_collection.find(query)
]
return matched_products
def get_product_context(products: List[Dict]) -> str:
if not products:
return ""
product_str = "Available products: "
product_str += ", ".join([f"'{p['name']}' - {p['description']}" for p in products[:2]])
return product_str
def format_response(response: str, products: List[Dict], intent: str, input_text: str) -> str:
# Handle product recommendation intent
if intent == "recommend_product":
if not products:
return "I’d love to recommend something from our sustainable catalog! Could you tell me more about what you’re looking for?"
product = products[0]
return f"Check out our '{product['name']}'—it’s {product['description'].lower()}. Want to explore more options?"
elif intent == "company_info":
return "Hutter Products GmbH specializes in sustainable product design and production, offering eco-friendly items like recycled textiles and ocean plastic goods."
elif intent == "ask_name":
return "I’m Hutter, your shopping guide for Hutter Products GmbH. How can I assist you today?"
elif intent == "math_query":
match = re.search(r"(\d+)\s*([\+\-\*/])\s*(\d+)", input_text.lower())
if match:
num1, op, num2 = int(match.group(1)), match.group(2), int(match.group(3))
if op == "+":
return f"{num1} plus {num2} is {num1 + num2}. Need help with shopping too?"
elif op == "-":
return f"{num1} minus {num2} is {num1 - num2}. Anything else I can assist with?"
elif op == "*":
return f"{num1} times {num2} is {num1 * num2}. Want to explore our products?"
elif op == "/":
return f"{num1} divided by {num2} is {num1 / num2}." if num2 != 0 else "Can’t divide by zero! How about some sustainable products instead?"
return "I can do simple math—try '2 + 2'. What else can I help you with?"
# Fallback with product nudge if available
if products:
product = products[0]
return f"{response} By the way, how about our '{product['name']}'? It’s {product['description'].lower()}."
return response if response else "How can I assist you with our sustainable products today?"
# Endpoints
@app.get("/")
async def root():
return {"message": "Welcome to the NER and Chat API!"}
@app.post("/process/", response_model=CombinedResponse)
async def process_prompt(request: PromptRequest):
try:
logger.info(f"Processing request: {request.input_text}")
input_text = request.input_text
history = request.conversation_history[-3:] if request.conversation_history else []
intent = detect_intent(input_text)
keywords = extract_keywords(input_text)
logger.info(f"Intent: {intent}, Keywords: {keywords}")
products = search_products_by_keywords(keywords)
product_context = get_product_context(products)
logger.info(f"Products matched: {len(products)}")
history_str = " || ".join(history)
full_input = f"{context_msg} || {history_str} || {product_context} || {input_text}" if (history or product_context) else f"{context_msg} || {input_text}"
logger.info(f"Full input to model: {full_input}")
logger.info("Tokenizing input...")
inputs = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=512)
logger.info("Input tokenized successfully.")
logger.info("Generating model response...")
outputs = model.generate(**inputs, max_length=50, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=2)
logger.info("Model generation complete.")
logger.info("Decoding model output...")
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Model response: {response}")
enhanced_response = format_response(response, products, intent, input_text)
qa_response = {
"question": input_text,
"answer": enhanced_response,
"score": 1.0
}
logger.info("Returning response...")
return {
"ner": {"extracted_keywords": keywords},
"qa": qa_response,
"products_matched": products
}
except Exception as e:
logger.error(f"Error processing request: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Oops, something went wrong: {str(e)}. Try again!")
@app.on_event("startup")
async def startup_event():
logger.info("API is running with BlenderBot-400M-distill, connected to MongoDB.")
@app.on_event("shutdown")
def shutdown_event():
client.close()