Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torchvision import transforms | |
from PIL import Image | |
import gradio as gr | |
model = torch.load("squeezenet.pth") | |
model.eval() | |
transform = transforms.Compose([ | |
transforms.Resize((128, 128)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) | |
]) | |
def classify_brain_tumor(image): | |
image = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(image) | |
_, predicted = torch.max(output, 1) | |
return "Tumor" if predicted.item() == 1 else "No Tumor" | |
interface = gr.Interface( | |
fn=classify_brain_tumor, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs="text", | |
title="Brain Tumor Classification", | |
description="Upload an MRI image to classify if it has a tumor or not. The Model is SqueezeNet." | |
) | |
interface.launch() |