# import gradio as gr # import torch # from diffusers import StableDiffusionControlNetPipeline, ControlNetModel # from PIL import Image # import numpy as np # import cv2 # from rembg import remove # # Загрузка моделей # controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble") # pipe = StableDiffusionControlNetPipeline.from_pretrained( # "runwayml/stable-diffusion-v1-5", # controlnet=controlnet, # # torch_dtype=torch.float16 # ).to("cuda") # def generate_background(image_path, prompt, negative_prompt): # # Удаление фона # image = Image.open(image_path).convert("RGBA") # output_image = remove(image) # # Преобразование изображения объекта в контурное изображение # foreground = output_image.convert("L") # _, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY) # contour_image = Image.fromarray(contour) # # Генерация фона # generator = torch.Generator(device="cuda").manual_seed(1024) # result = pipe( # prompt=prompt, # negative_prompt=negative_prompt, # image=contour_image, # generator=generator, # num_inference_steps=50 # ) # background = result.images[0].convert("RGBA") # # Изменение размера фона до размера переднего плана # background = background.resize(output_image.size) # # Наложение изображений # composite = Image.alpha_composite(background, output_image) # return composite # # Определение интерфейса Gradio # iface = gr.Interface( # fn=generate_background, # inputs=[ # gr.Image(type="filepath", label="Загрузите изображение"), # gr.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"), # gr.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт") # ], # outputs=gr.Image(type="pil", label="Результат") # ) # # Запуск интерфейса # iface.launch() import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Gradio Template Currently running on {power_device}. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result] ) demo.queue().launch()