Surn commited on
Commit
8df571c
·
0 Parent(s):

initial commit

Browse files
Files changed (5) hide show
  1. .gitattributes +35 -0
  2. .gitignore +5 -0
  3. README.md +90 -0
  4. app.py +79 -0
  5. requirements.txt +5 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ ################################################################################
2
+ # This .gitignore file was automatically created by Microsoft(R) Visual Studio.
3
+ ################################################################################
4
+
5
+ /.vs
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: MusicGenClassify
3
+ emoji: 🎼
4
+ colorFrom: red
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 5.25.2
8
+ app_file: app.py
9
+ pinned: false
10
+ short_description: Classify a song for use in MusicGen model training
11
+ thumbnail: >-
12
+ https://cdn-uploads.huggingface.co/production/uploads/6346595c9e5f0fe83fc60444/1O6woCP6rRcUAE6dZqbuB.png
13
+ ---
14
+
15
+ # Audio Classifier for MusicGen Fine-Tuning
16
+
17
+ ## Overview
18
+ The **Audio Classifier for MusicGen Fine-Tuning** is a web-based application designed to generate metadata for `.wav` audio files, facilitating dataset preparation for fine-tuning music generation models like MusicGen from Audiocraft. Built using **Gradio**, the app allows users to upload a single `.wav` file, input a custom label, and receive a JSON output containing detailed metadata. This tool is optimized for deployment as a **Hugging Face Space**, enabling community use for music classification tasks.
19
+
20
+ ## Functionality
21
+ The application processes an uploaded `.wav` file to extract key audio features and predict its music genre, producing a JSON metadata file suitable for MusicGen training. The main features include:
22
+
23
+ - **User Inputs**:
24
+ - **Audio File**: Upload a `.wav` file via a Gradio `Audio` component.
25
+ - **Custom Label**: Enter a descriptive label (e.g., "A calm melody") in a textbox.
26
+ - **Audio Processing**:
27
+ - **Duration**: Extracts the audio file's length in seconds using `librosa`.
28
+ - **Tempo**: Estimates beats per minute (BPM) with `librosa.beat.tempo`.
29
+ - **Sample Rate**: Retrieves the native sample rate (e.g., 44.1kHz) of the `.wav` file.
30
+ - **Genre Prediction**: Uses a pre-trained audio classification model (`sanchit-gandhi/distilhubert-finetuned-gtzan`) to predict one of 10 genres: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, or rock.
31
+ - **Output**: A JSON object displayed in a Gradio `JSON` component, containing:
32
+ - `filename`: Name of the uploaded file.
33
+ - `duration`: Length in seconds (rounded to 3 decimal places).
34
+ - `description`: The user-provided label.
35
+ - `genre`: Predicted music genre.
36
+ - `tempo`: Tempo in BPM (rounded to 2 decimal places).
37
+ - `sample_rate`: Native sample rate in Hz.
38
+
39
+ ## Example Output
40
+ For a file `song.wav` with the user-provided label "A calm melody," the JSON output might be:
41
+ ```json
42
+ {
43
+ "filename": "song.wav",
44
+ "duration": 5.123,
45
+ "description": "A calm melody",
46
+ "genre": "jazz",
47
+ "tempo": 90.5,
48
+ "sample_rate": 44100
49
+ }
50
+ ```
51
+
52
+ ## Technical Details
53
+ - **Framework**: Built with Gradio 5.24.0 for a user-friendly web interface.
54
+ - **Libraries**:
55
+ - `librosa`: Audio feature extraction (duration, tempo, sample rate).
56
+ - `transformers` and `torch`: Genre prediction using a pre-trained model.
57
+ - `numpy`: Numerical operations for probability calculations.
58
+ - **Model**: Utilizes `sanchit-gandhi/distilhubert-finetuned-gtzan`, a DistilHuBERT model fine-tuned on the GTZAN dataset for music genre classification.
59
+ - **Audio Processing**: Resamples audio to 16kHz for the model if the native sample rate differs, ensuring compatibility.
60
+ - **Error Handling**: Returns a JSON error message if processing fails (e.g., invalid file).
61
+
62
+ ## Deployment
63
+ The application is designed for deployment as a **Hugging Face Space**, making it accessible to the community for MusicGen fine-tuning. Deployment steps include:
64
+ - Creating a Space with Gradio as the framework.
65
+ - Uploading the script as `app.py`.
66
+ - Including a `requirements.txt` with dependencies:
67
+
68
+ transformers
69
+ torch
70
+ torchaudio
71
+ librosa
72
+ numpy
73
+
74
+ - Committing files to build and host the app.
75
+
76
+ ## Use Case
77
+ This tool is ideal for users preparing datasets for MusicGen fine-tuning, particularly those with collections of `.wav` files from games, music, or movies. It automates the generation of metadata, reducing manual effort in labeling audio files. The JSON output is compatible with Audiocraft’s training requirements, enabling users to fine-tune music generation models efficiently.
78
+
79
+ ## Benefits
80
+ - **User-Friendly**: Simple interface for uploading files and entering labels.
81
+ - **Automated Metadata**: Generates detailed metadata (genre, tempo, sample rate) to enhance descriptions.
82
+ - **Community Access**: Deployment on Hugging Face Spaces allows others to use it for similar tasks.
83
+ - **Audiocraft Compatibility**: Produces JSON files with required fields (`duration`, `description`) for MusicGen training.
84
+
85
+ ## Limitations
86
+ - **Single File Processing**: Processes one file at a time, suitable for individual classification but not batch processing.
87
+ - **Genre Scope**: Limited to 10 genres from the GTZAN dataset, which may not cover all music types.
88
+ - **Label Dependency**: Relies on user input for the description, requiring manual effort for custom labels.
89
+
90
+ This application streamlines the preparation of audio datasets for MusicGen fine-tuning, offering a practical tool for researchers and enthusiasts in music generation.
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import librosa
3
+ from transformers import AutoModelForAudioClassification, AutoFeatureExtractor
4
+ import torch
5
+ import numpy as np
6
+ import os
7
+
8
+ # Load the pre-trained model and feature extractor for genre prediction
9
+ model_name = "sanchit-gandhi/distilhubert-finetuned-gtzan"
10
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
11
+ model = AutoModelForAudioClassification.from_pretrained(model_name)
12
+
13
+ # List of genres the model can predict
14
+ genres = ["blues", "classical", "country", "disco", "hiphop", "jazz", "metal", "pop", "reggae", "rock"]
15
+
16
+ # Function to process the uploaded audio file
17
+ def process_audio(audio_file, user_label):
18
+ try:
19
+ # Extract filename from the uploaded file path
20
+ filename = os.path.basename(audio_file)
21
+
22
+ # Load the audio file with its native sample rate
23
+ audio, sr = librosa.load(audio_file, sr=None)
24
+
25
+ # Extract duration
26
+ duration = librosa.get_duration(y=audio, sr=sr)
27
+
28
+ # Extract tempo
29
+ tempo = librosa.beat.tempo(y=audio, sr=sr)[0]
30
+
31
+ # Preprocess audio for the model (resample to 16kHz if needed)
32
+ target_sr = 16000
33
+ if sr != target_sr:
34
+ audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sr)
35
+ sr_model = target_sr
36
+ else:
37
+ sr_model = sr
38
+ inputs = feature_extractor(audio, sampling_rate=sr_model, return_tensors="pt")
39
+
40
+ # Predict genre using the model
41
+ with torch.no_grad():
42
+ logits = model(**inputs).logits
43
+ probabilities = torch.nn.functional.softmax(logits, dim=-1).squeeze().numpy()
44
+ predicted_genre = genres[np.argmax(probabilities)]
45
+
46
+ # Use the user-provided label as the description
47
+ description = f"{user_label}, {predicted_genre}, {tempo:.2f} BPM, {sr} Hz"
48
+
49
+ # Create metadata dictionary
50
+ metadata = {
51
+ "filename": filename,
52
+ "duration": np.round(duration, 3),
53
+ "description": description,
54
+ "genre": predicted_genre,
55
+ "tempo": np.round(tempo, 2),
56
+ "sample_rate": sr
57
+ }
58
+
59
+ return metadata
60
+ except Exception as e:
61
+ return {"error": str(e)}
62
+
63
+ # Gradio interface
64
+ with gr.Blocks(theme="Surn/beeuty") as app:
65
+ gr.Markdown("# Audio Classifier for MusicGen Fine Tuning")
66
+ gr.Markdown("Upload a audio file (preferred `.wav`), provide a label, and get metadata for MusicGen training.")
67
+
68
+ with gr.Row():
69
+ audio_input = gr.Audio(label="Upload Audio File", type="filepath")
70
+ label_input = gr.Textbox(label="Enter Label", placeholder="e.g., A calm melody")
71
+
72
+ submit_button = gr.Button("Classify")
73
+
74
+ output_json = gr.JSON(label="Metadata Output")
75
+
76
+ submit_button.click(process_audio, inputs=[audio_input, label_input], outputs=output_json)
77
+
78
+ # Launch the app
79
+ app.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ transformers
2
+ torch
3
+ torchaudio
4
+ librosa==0.10.2.post1
5
+ numpy