File size: 15,310 Bytes
8a7b065
 
 
ae12d34
 
8a7b065
 
ae12d34
8a7b065
 
 
 
 
 
 
 
 
 
 
 
6143ad5
8a7b065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae12d34
 
8a7b065
 
 
 
ae12d34
 
 
 
 
 
 
 
8a7b065
 
 
 
 
 
 
 
 
 
ae12d34
 
8a7b065
ae12d34
 
8a7b065
 
 
ae12d34
 
 
 
 
 
 
 
 
 
 
 
 
8a7b065
 
ae12d34
8a7b065
ae12d34
8a7b065
 
 
ae12d34
8a7b065
 
 
 
 
 
 
 
 
 
 
ae12d34
8a7b065
ae12d34
 
 
 
 
 
8a7b065
ae12d34
 
8a7b065
 
 
 
ae12d34
 
 
 
 
 
 
 
 
 
 
8a7b065
ae12d34
 
8a7b065
 
ae12d34
 
 
8a7b065
ae12d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7b065
ae12d34
 
 
 
 
 
 
8a7b065
ae12d34
8a7b065
ae12d34
 
 
8a7b065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108c5ba
8a7b065
 
 
 
 
 
 
6143ad5
8a7b065
 
6143ad5
8a7b065
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# HURA (Hexagonal Uniformly Redundant Arrays) are used for aperture masks and imaging, and encoding.
# check it out https://ntrs.nasa.gov/citations/19850026627
# by Surn (Charles Fettinger) 4/5/2025
from PIL import Image
import math
import gradio as gr
from tempfile import NamedTemporaryFile

from transformers.models.deprecated.vit_hybrid import image_processing_vit_hybrid
import utils.constants as constants
import utils.color_utils as color_utils


class HuraConfig:
    """Configuration for Hexagonal Uniformly Redundant Array pattern generation."""
    
    def __init__(self):
        # Core parameters
        self.v = 139  # Prime number parameter (affects pattern complexity)
        self.r = 42   # Pattern frequency parameter
        self.version = "0.2.2"
        
        # Pattern generation constants
        self.hex_ratio = 0.5773503  # sqrt(3)/3
        self.pattern_scale = 21.0   # Controls pattern frequency
        self.vignette_inner = 0.97
        self.vignette_outer = 1.01
        
        # Colors
        self.default_colors = [
            (255, 0, 0),   # Red
            (0, 255, 0),   # Green
            (0, 0, 255)    # Blue
        ]
        
        # Prime number calculation
        self.prime_range_start = 1
        self.prime_range_end = 5001
        self._primes_cache = None  # Will be lazily loaded
    
    def get_v(self):
        """Get the current V parameter value."""
        return self.v
        
    def set_v(self, value):
        """Set the V parameter value."""
        if not isinstance(value, (int, float)) or value < 1:
            raise ValueError(f"V value must be a positive float, got {value}")
        self.v = value
        
    def get_r(self):
        """Get the current R parameter value."""
        return self.r
        
    def set_r(self, value):
        """Set the R parameter value."""
        if not isinstance(value, (int, float)) or value < 1:
            raise ValueError(f"R value must be a positive float, got {value}")
        self.r = value
    
    def get_primes(self):
        """Get or calculate the list of primes in the configured range."""
        if self._primes_cache is None:
            self._primes_cache = get_primes_in_range(self.prime_range_start, self.prime_range_end)
        return self._primes_cache
    
    def find_nearest_prime(self, value):
        """Find the nearest prime number to the given value."""
        return min(self.get_primes(), key=lambda x: abs(x - value))
    
    def reset_colors(self):
        """Reset default colors to original values."""
        self.default_colors = [
            (255, 0, 0),   # Red
            (0, 255, 0),   # Green
            (0, 0, 255)    # Blue
        ]
        return self.default_colors

# Initialize the HuraConfig instance
config = HuraConfig()

# For backwards compatibility - consider deprecating these
__version__ = config.version
_V = config.v
_R = config.r

def get_v():
    return config.get_v()

def set_v(val):
    config.set_v(val)

def get_r():
    return config.get_r()

def set_r(val):
    config.set_r(val)

state_colors = []

def smoothstep(edge0, edge1, x):
    """
    Smoothstep function for vignette effect.
    Smoothly interpolate between edge0 and edge1 based on x.
    """
    if edge0 == edge1:
        return 0.0 if x < edge0 else 1.0
    t = min(max((x - edge0) / (edge1 - edge0), 0.0), 1.0)
    return t * t * (3 - 2 * t)

# Define the hexagon function to compute coordinates
def hexagon(p):
    """
    Compute hexagon coordinates and metrics for point p.
    
    Args:
        p (tuple): Normalized point (x,y) in [-aspect,aspect] � [-1,1] range
        
    Returns:
        tuple: (hex_x, hex_y, edge_distance, center_distance)
            - hex_x, hex_y: Integer coordinates of the hexagon cell
            - edge_distance: Distance to nearest edge (0-1)
            - center_distance: Distance to cell center (0-1)
    """
    # Transform to hexagonal coordinate system
    q = (p[0] * 2.0 * config.hex_ratio, p[1] + p[0] * config.hex_ratio)
    pi = (math.floor(q[0]), math.floor(q[1]))
    pf = (q[0] - pi[0], q[1] - pi[1])
    mod_val = (pi[0] + pi[1]) % 3.0  # renamed from v
    ca = 1.0 if mod_val >= 1.0 else 0.0
    cb = 1.0 if mod_val >= 2.0 else 0.0
    ma = (1.0 if pf[1] >= pf[0] else 0.0, 1.0 if pf[0] >= pf[1] else 0.0)
    temp = (
        1.0 - pf[1] + ca * (pf[0] + pf[1] - 1.0) + cb * (pf[1] - 2.0 * pf[0]),
        1.0 - pf[0] + ca * (pf[0] + pf[1] - 1.0) + cb * (pf[0] - 2.0 * pf[1])
    )
    e = ma[0] * temp[0] + ma[1] * temp[1]
    p2_x = (q[0] + math.floor(0.5 + p[1] / 1.5)) * 0.5 + 0.5
    p2_y = (4.0 * p[1] / 3.0) * 0.5 + 0.5
    fract_p2 = (p2_x - math.floor(p2_x), p2_y - math.floor(p2_y))
    f = math.sqrt((fract_p2[0] - 0.5)**2 + ((fract_p2[1] - 0.5) * 0.85)**2)
    h_xy = (pi[0] + ca - cb * ma[0], pi[1] + ca - cb * ma[1])
    return (h_xy[0], h_xy[1], e, f)

# important note: this is not a true hexagonal pattern, but a hexagonal grid
def ura(p):
    """
    Generate binary pattern value based on Uniformly Redundant Array algorithm.
    
    Args:
        p (tuple): Hexagon coordinates (x,y)
        
    Returns:
        float: 1.0 for pattern, 0.0 for background

    future consideration.. add animation
    #ifdef INCREMENT_R
        float l = mod(p.y + floor(time*1.5)*p.x, v);
    #else
        float l = mod(p.y + r*p.x, v);
    """    
    r = get_r()
    v = get_v()
    l = math.fmod(abs(p[1]) + r * abs(p[0]), v)
    rz = 1.0
    for i in range(1, int(v/2) + 1):
        if math.isclose(math.fmod(i * i, v), l, abs_tol=1e-6):
            rz = 0.0
            break
    return rz

# Generate the image with colorful_hexagonal pattern
def generate_image_color(width, height, colors=None):
    """Generate an RGB image with a colorful hexagonal pattern."""
    img = Image.new('RGB', (width, height))
    if colors is None or colors == []:
        colors = config.default_colors
    r = config.get_r()
    v = config.get_v()
    aspect = width / height
    for j in range(height):
        for i in range(width):
            # Normalize pixel coordinates to [0, 1]
            q_x = i / width
            q_y = j / height
            # Transform to centered coordinates with aspect ratio
            p_x = (q_x * 2.0 - 1.0) * aspect
            p_y = q_y * 2.0 - 1.0
            p = (p_x, p_y)
            # Scale coordinates for pattern frequency
            h = hexagon((p[0] * config.pattern_scale, p[1] * config.pattern_scale))
            h_xy = (int(h[0]), int(h[1]))
            # Assign color based on hexagon coordinates
            rz = math.fmod(abs(h_xy[0]) + r * abs(h_xy[1]),v) 
            color_index = int(rz % len(colors))
            col = colors[color_index]
            # Apply vignette effect
            q = (q_x * 2.0 - 1.0, q_y * 2.0 - 1.0)
            vignette = smoothstep(config.vignette_outer, config.vignette_inner, max(abs(q[0]), abs(q[1])))
            col = tuple(int(c * vignette) for c in col)
            # Set the pixel color
            img.putpixel((i, j), col)
    return img

def generate_image_grayscale(width, height):
    img = Image.new('RGB', (width, height))
    aspect = width / height
    for j in range(height):
        for i in range(width):
            q_x = i / width
            q_y = j / height
            p_x = (q_x * 2.0 - 1.0) * aspect
            p_y = q_y * 2.0 - 1.0
            p = (p_x, p_y)
            h = hexagon((p[0] * config.pattern_scale, p[1] * config.pattern_scale))
            rz = ura(h[:2])
            smooth = smoothstep(-0.2, 0.13, h[2])
            if rz > 0.5:
                col = smooth
            else:
                col = 1.0 - smooth
            q = (q_x * 2.0 - 1.0, q_y * 2.0 - 1.0)
            vignette = smoothstep(config.vignette_outer, config.vignette_inner, max(abs(q[0]), abs(q[1])))
            col *= vignette
            color = int(abs(col) * 255)
            img.putpixel((i, j), (color, color, color))
    return img

def get_primes_in_range(start: int, end: int) -> list:
    """
    Return a list of prime numbers between start and end (inclusive).

    Uses the Sieve of Eratosthenes for efficiency.

    Parameters:
        start (int): The starting number of the range.
        end (int): The ending number of the range.

    Returns:
        list: A list of prime numbers between start and end.
    """
    if end < 2:
        return []    
    sieve = [True] * (end + 1)
    sieve[0] = sieve[1] = False
    for i in range(2, int(end ** 0.5) + 1):
        if sieve[i]:
            for j in range(i * i, end + 1, i):
                sieve[j] = False
    return [i for i in range(start, end + 1) if sieve[i]]

def find_nearest_prime(value):
    """Find the closest prime number to the given value."""
    return config.find_nearest_prime(value)

def generate_pattern_background(pattern_type="color", width=1024, height=768, v_value=_V, r_value=_R, colors=None):
    # Generate a hexagonal pattern image with the given parameters.
    # Do not pass gr.State values here
    # Set the parameters
    set_v(v_value)
    set_r(r_value)
    print(f"Generating pattern with V: {v_value}, R: {r_value}, Colors: {colors}")
    color_count = 3
    
    if pattern_type == "color":
        if colors is None:
            img = generate_image_color(width, height)
        else:
            img = generate_image_color(width, height, colors)
            color_count = len(colors)
    else:  # grayscale
        img = generate_image_grayscale(width, height)
        color_count = 1
    
    # Save to temporary file and return path
    with NamedTemporaryFile(delete=False,prefix=f"hura_{str(color_count)}_v{str(v_value)}_r{str(r_value)}_", suffix=".png") as tmp:
        img.save(tmp.name, format="PNG")
        constants.temp_files.append(tmp.name)
        return tmp.name


def create_color_swatch_html(colors):
    """Create HTML for displaying color swatches"""
    swatches = ''.join(
        f'<div style="width: 50px; height: 50px; background-color: rgb{c}; '
        f'border: 1px solid #ccc;"></div>' 
        for c in colors
    )
    return f'<div style="display: flex; gap: 10px;">{swatches}</div>'

def _add_color(color, color_list):
    if color is None:
        return color_list, color_list, ""
    
    # Convert hex color to RGB
    rgb_color = color_utils.hex_to_rgb(color)
    color_list = color_list + [rgb_color]
    
    # Create HTML to display color swatches
    html = create_color_swatch_html(color_list)
    return color_list, html

def _init_colors():
    """Initialize the color swatches HTML display based on config colors"""
    updated_list = list(config.default_colors)
    # Rebuild the HTML swatches from the updated list
    html = create_color_swatch_html(updated_list)
    return html

def reset_colors():
    """Reset the color list to the default colors."""
    colors = config.reset_colors()
    html = create_color_swatch_html(colors)
    return colors, html

def _generate_pattern_from_state(pt, width, height, v_val, r_val, colors_list):
    # colors_list is automatically the raw value from the gr.State input
    return generate_pattern_background(pt, width, height, v_val, r_val, colors_list)

def render() -> dict:
    """
    Renders a colorful or grayscale hexagonal pattern creation interface
    
    Returns:
        dict: A dictionary containing:
            - target_image (gr.Image): The generated pattern image component
            - run_generate_hex_pattern (function): Function to generate a pattern with given dimensions
            - set_height_width_hura_image (function): Function to update the slider values
            - width_slider (gr.Slider): The width slider component
            - height_slider (gr.Slider): The height slider component
    """
    
    # Initialize state
    global state_colors
    state_colors = gr.State(config.default_colors)
    init_colors_html = _init_colors()
    

    target_image = gr.Image(label="Generated Pattern", type="filepath")
    with gr.Row():
        pattern_type = gr.Radio(
            label="Pattern Type",
            choices=["color", "grayscale"],
            value="grayscale",
            type="value"
        )        
        with gr.Column():
            with gr.Row():
                width_slider = gr.Slider(minimum=256, maximum=2560, value=1024, label="Width", step=8)
                height_slider = gr.Slider(minimum=256, maximum=2560, value=768, label="Height", step=8)
            v_value_slider = gr.Slider(minimum=config.prime_range_start, maximum=config.prime_range_end, value=config.v, label="V Value (Prime Number)", step=1)
            r_value_slider = gr.Slider(minimum=1, maximum=100, value=config.r, label="R Value")
        show_borders_chbox = gr.Checkbox(label="Show Borders", value=True)
    
    with gr.Row(visible=False) as color_row:
        color_picker = gr.ColorPicker(label="Pick a Color")
        add_button = gr.Button("Add Color")
        with gr.Column():
            color_display = gr.HTML(label="Color Swatches", value=init_colors_html)
        with gr.Row():
            delete_colors_button = gr.Button("Delete Colors")
            reset_colors_button = gr.Button("Reset Colors")
    with gr.Row():
        generate_button = gr.Button("Generate Pattern")


    def run_generate_hex_pattern(width: int, height: int) -> str:
        """
        Generate a colored hexagonal pattern image with the given width and height.
        Uses default V and R values and the default color palette.
    
        Returns:
            str: The filepath of the generated image.
        """
        global state_colors
        width_slider.value=width
        height_slider.value=height
        gr.update()
        # Use the current _V, _R, and default_colors
        filepath = generate_pattern_background(
            pattern_type="color",
            width=width,
            height=height,
            v_value=get_v(),
            r_value=get_r(),
            colors=state_colors.value
        )
        return filepath

    pattern_type.change(
        fn=lambda x: gr.update(visible=(x == "color")),
        inputs=pattern_type,
        outputs=color_row
    )    
    add_button.click(
        fn=_add_color,
        inputs=[color_picker, state_colors],
        outputs=[state_colors, color_display]
    )
    delete_colors_button.click(
        fn=lambda x: ([], "<div>Add Colors</div>"),
        inputs=[],
        outputs=[state_colors, color_display]
    )
    reset_colors_button.click(
        fn=reset_colors,
        inputs=[],
        outputs=[state_colors,color_display]
    )
    generate_button.click(
        fn=_generate_pattern_from_state,
        inputs=[pattern_type, width_slider, height_slider, v_value_slider, r_value_slider, state_colors],
        outputs=target_image, scroll_to_output=True
    )

    v_value_slider.input(
        lambda x: config.find_nearest_prime(x),
        inputs=v_value_slider,
        outputs=v_value_slider
    )
    v_value_slider.release(
        lambda x: config.find_nearest_prime(x),
        inputs=v_value_slider,
        outputs=v_value_slider, queue=False
    )

    return {
        "target_image": target_image,
        "run_generate_hex_pattern": run_generate_hex_pattern,
        "width_slider": width_slider,
        "height_slider": height_slider
    }