Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,310 Bytes
8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 6143ad5 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 ae12d34 8a7b065 108c5ba 8a7b065 6143ad5 8a7b065 6143ad5 8a7b065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
# HURA (Hexagonal Uniformly Redundant Arrays) are used for aperture masks and imaging, and encoding.
# check it out https://ntrs.nasa.gov/citations/19850026627
# by Surn (Charles Fettinger) 4/5/2025
from PIL import Image
import math
import gradio as gr
from tempfile import NamedTemporaryFile
from transformers.models.deprecated.vit_hybrid import image_processing_vit_hybrid
import utils.constants as constants
import utils.color_utils as color_utils
class HuraConfig:
"""Configuration for Hexagonal Uniformly Redundant Array pattern generation."""
def __init__(self):
# Core parameters
self.v = 139 # Prime number parameter (affects pattern complexity)
self.r = 42 # Pattern frequency parameter
self.version = "0.2.2"
# Pattern generation constants
self.hex_ratio = 0.5773503 # sqrt(3)/3
self.pattern_scale = 21.0 # Controls pattern frequency
self.vignette_inner = 0.97
self.vignette_outer = 1.01
# Colors
self.default_colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255) # Blue
]
# Prime number calculation
self.prime_range_start = 1
self.prime_range_end = 5001
self._primes_cache = None # Will be lazily loaded
def get_v(self):
"""Get the current V parameter value."""
return self.v
def set_v(self, value):
"""Set the V parameter value."""
if not isinstance(value, (int, float)) or value < 1:
raise ValueError(f"V value must be a positive float, got {value}")
self.v = value
def get_r(self):
"""Get the current R parameter value."""
return self.r
def set_r(self, value):
"""Set the R parameter value."""
if not isinstance(value, (int, float)) or value < 1:
raise ValueError(f"R value must be a positive float, got {value}")
self.r = value
def get_primes(self):
"""Get or calculate the list of primes in the configured range."""
if self._primes_cache is None:
self._primes_cache = get_primes_in_range(self.prime_range_start, self.prime_range_end)
return self._primes_cache
def find_nearest_prime(self, value):
"""Find the nearest prime number to the given value."""
return min(self.get_primes(), key=lambda x: abs(x - value))
def reset_colors(self):
"""Reset default colors to original values."""
self.default_colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255) # Blue
]
return self.default_colors
# Initialize the HuraConfig instance
config = HuraConfig()
# For backwards compatibility - consider deprecating these
__version__ = config.version
_V = config.v
_R = config.r
def get_v():
return config.get_v()
def set_v(val):
config.set_v(val)
def get_r():
return config.get_r()
def set_r(val):
config.set_r(val)
state_colors = []
def smoothstep(edge0, edge1, x):
"""
Smoothstep function for vignette effect.
Smoothly interpolate between edge0 and edge1 based on x.
"""
if edge0 == edge1:
return 0.0 if x < edge0 else 1.0
t = min(max((x - edge0) / (edge1 - edge0), 0.0), 1.0)
return t * t * (3 - 2 * t)
# Define the hexagon function to compute coordinates
def hexagon(p):
"""
Compute hexagon coordinates and metrics for point p.
Args:
p (tuple): Normalized point (x,y) in [-aspect,aspect] � [-1,1] range
Returns:
tuple: (hex_x, hex_y, edge_distance, center_distance)
- hex_x, hex_y: Integer coordinates of the hexagon cell
- edge_distance: Distance to nearest edge (0-1)
- center_distance: Distance to cell center (0-1)
"""
# Transform to hexagonal coordinate system
q = (p[0] * 2.0 * config.hex_ratio, p[1] + p[0] * config.hex_ratio)
pi = (math.floor(q[0]), math.floor(q[1]))
pf = (q[0] - pi[0], q[1] - pi[1])
mod_val = (pi[0] + pi[1]) % 3.0 # renamed from v
ca = 1.0 if mod_val >= 1.0 else 0.0
cb = 1.0 if mod_val >= 2.0 else 0.0
ma = (1.0 if pf[1] >= pf[0] else 0.0, 1.0 if pf[0] >= pf[1] else 0.0)
temp = (
1.0 - pf[1] + ca * (pf[0] + pf[1] - 1.0) + cb * (pf[1] - 2.0 * pf[0]),
1.0 - pf[0] + ca * (pf[0] + pf[1] - 1.0) + cb * (pf[0] - 2.0 * pf[1])
)
e = ma[0] * temp[0] + ma[1] * temp[1]
p2_x = (q[0] + math.floor(0.5 + p[1] / 1.5)) * 0.5 + 0.5
p2_y = (4.0 * p[1] / 3.0) * 0.5 + 0.5
fract_p2 = (p2_x - math.floor(p2_x), p2_y - math.floor(p2_y))
f = math.sqrt((fract_p2[0] - 0.5)**2 + ((fract_p2[1] - 0.5) * 0.85)**2)
h_xy = (pi[0] + ca - cb * ma[0], pi[1] + ca - cb * ma[1])
return (h_xy[0], h_xy[1], e, f)
# important note: this is not a true hexagonal pattern, but a hexagonal grid
def ura(p):
"""
Generate binary pattern value based on Uniformly Redundant Array algorithm.
Args:
p (tuple): Hexagon coordinates (x,y)
Returns:
float: 1.0 for pattern, 0.0 for background
future consideration.. add animation
#ifdef INCREMENT_R
float l = mod(p.y + floor(time*1.5)*p.x, v);
#else
float l = mod(p.y + r*p.x, v);
"""
r = get_r()
v = get_v()
l = math.fmod(abs(p[1]) + r * abs(p[0]), v)
rz = 1.0
for i in range(1, int(v/2) + 1):
if math.isclose(math.fmod(i * i, v), l, abs_tol=1e-6):
rz = 0.0
break
return rz
# Generate the image with colorful_hexagonal pattern
def generate_image_color(width, height, colors=None):
"""Generate an RGB image with a colorful hexagonal pattern."""
img = Image.new('RGB', (width, height))
if colors is None or colors == []:
colors = config.default_colors
r = config.get_r()
v = config.get_v()
aspect = width / height
for j in range(height):
for i in range(width):
# Normalize pixel coordinates to [0, 1]
q_x = i / width
q_y = j / height
# Transform to centered coordinates with aspect ratio
p_x = (q_x * 2.0 - 1.0) * aspect
p_y = q_y * 2.0 - 1.0
p = (p_x, p_y)
# Scale coordinates for pattern frequency
h = hexagon((p[0] * config.pattern_scale, p[1] * config.pattern_scale))
h_xy = (int(h[0]), int(h[1]))
# Assign color based on hexagon coordinates
rz = math.fmod(abs(h_xy[0]) + r * abs(h_xy[1]),v)
color_index = int(rz % len(colors))
col = colors[color_index]
# Apply vignette effect
q = (q_x * 2.0 - 1.0, q_y * 2.0 - 1.0)
vignette = smoothstep(config.vignette_outer, config.vignette_inner, max(abs(q[0]), abs(q[1])))
col = tuple(int(c * vignette) for c in col)
# Set the pixel color
img.putpixel((i, j), col)
return img
def generate_image_grayscale(width, height):
img = Image.new('RGB', (width, height))
aspect = width / height
for j in range(height):
for i in range(width):
q_x = i / width
q_y = j / height
p_x = (q_x * 2.0 - 1.0) * aspect
p_y = q_y * 2.0 - 1.0
p = (p_x, p_y)
h = hexagon((p[0] * config.pattern_scale, p[1] * config.pattern_scale))
rz = ura(h[:2])
smooth = smoothstep(-0.2, 0.13, h[2])
if rz > 0.5:
col = smooth
else:
col = 1.0 - smooth
q = (q_x * 2.0 - 1.0, q_y * 2.0 - 1.0)
vignette = smoothstep(config.vignette_outer, config.vignette_inner, max(abs(q[0]), abs(q[1])))
col *= vignette
color = int(abs(col) * 255)
img.putpixel((i, j), (color, color, color))
return img
def get_primes_in_range(start: int, end: int) -> list:
"""
Return a list of prime numbers between start and end (inclusive).
Uses the Sieve of Eratosthenes for efficiency.
Parameters:
start (int): The starting number of the range.
end (int): The ending number of the range.
Returns:
list: A list of prime numbers between start and end.
"""
if end < 2:
return []
sieve = [True] * (end + 1)
sieve[0] = sieve[1] = False
for i in range(2, int(end ** 0.5) + 1):
if sieve[i]:
for j in range(i * i, end + 1, i):
sieve[j] = False
return [i for i in range(start, end + 1) if sieve[i]]
def find_nearest_prime(value):
"""Find the closest prime number to the given value."""
return config.find_nearest_prime(value)
def generate_pattern_background(pattern_type="color", width=1024, height=768, v_value=_V, r_value=_R, colors=None):
# Generate a hexagonal pattern image with the given parameters.
# Do not pass gr.State values here
# Set the parameters
set_v(v_value)
set_r(r_value)
print(f"Generating pattern with V: {v_value}, R: {r_value}, Colors: {colors}")
color_count = 3
if pattern_type == "color":
if colors is None:
img = generate_image_color(width, height)
else:
img = generate_image_color(width, height, colors)
color_count = len(colors)
else: # grayscale
img = generate_image_grayscale(width, height)
color_count = 1
# Save to temporary file and return path
with NamedTemporaryFile(delete=False,prefix=f"hura_{str(color_count)}_v{str(v_value)}_r{str(r_value)}_", suffix=".png") as tmp:
img.save(tmp.name, format="PNG")
constants.temp_files.append(tmp.name)
return tmp.name
def create_color_swatch_html(colors):
"""Create HTML for displaying color swatches"""
swatches = ''.join(
f'<div style="width: 50px; height: 50px; background-color: rgb{c}; '
f'border: 1px solid #ccc;"></div>'
for c in colors
)
return f'<div style="display: flex; gap: 10px;">{swatches}</div>'
def _add_color(color, color_list):
if color is None:
return color_list, color_list, ""
# Convert hex color to RGB
rgb_color = color_utils.hex_to_rgb(color)
color_list = color_list + [rgb_color]
# Create HTML to display color swatches
html = create_color_swatch_html(color_list)
return color_list, html
def _init_colors():
"""Initialize the color swatches HTML display based on config colors"""
updated_list = list(config.default_colors)
# Rebuild the HTML swatches from the updated list
html = create_color_swatch_html(updated_list)
return html
def reset_colors():
"""Reset the color list to the default colors."""
colors = config.reset_colors()
html = create_color_swatch_html(colors)
return colors, html
def _generate_pattern_from_state(pt, width, height, v_val, r_val, colors_list):
# colors_list is automatically the raw value from the gr.State input
return generate_pattern_background(pt, width, height, v_val, r_val, colors_list)
def render() -> dict:
"""
Renders a colorful or grayscale hexagonal pattern creation interface
Returns:
dict: A dictionary containing:
- target_image (gr.Image): The generated pattern image component
- run_generate_hex_pattern (function): Function to generate a pattern with given dimensions
- set_height_width_hura_image (function): Function to update the slider values
- width_slider (gr.Slider): The width slider component
- height_slider (gr.Slider): The height slider component
"""
# Initialize state
global state_colors
state_colors = gr.State(config.default_colors)
init_colors_html = _init_colors()
target_image = gr.Image(label="Generated Pattern", type="filepath")
with gr.Row():
pattern_type = gr.Radio(
label="Pattern Type",
choices=["color", "grayscale"],
value="grayscale",
type="value"
)
with gr.Column():
with gr.Row():
width_slider = gr.Slider(minimum=256, maximum=2560, value=1024, label="Width", step=8)
height_slider = gr.Slider(minimum=256, maximum=2560, value=768, label="Height", step=8)
v_value_slider = gr.Slider(minimum=config.prime_range_start, maximum=config.prime_range_end, value=config.v, label="V Value (Prime Number)", step=1)
r_value_slider = gr.Slider(minimum=1, maximum=100, value=config.r, label="R Value")
show_borders_chbox = gr.Checkbox(label="Show Borders", value=True)
with gr.Row(visible=False) as color_row:
color_picker = gr.ColorPicker(label="Pick a Color")
add_button = gr.Button("Add Color")
with gr.Column():
color_display = gr.HTML(label="Color Swatches", value=init_colors_html)
with gr.Row():
delete_colors_button = gr.Button("Delete Colors")
reset_colors_button = gr.Button("Reset Colors")
with gr.Row():
generate_button = gr.Button("Generate Pattern")
def run_generate_hex_pattern(width: int, height: int) -> str:
"""
Generate a colored hexagonal pattern image with the given width and height.
Uses default V and R values and the default color palette.
Returns:
str: The filepath of the generated image.
"""
global state_colors
width_slider.value=width
height_slider.value=height
gr.update()
# Use the current _V, _R, and default_colors
filepath = generate_pattern_background(
pattern_type="color",
width=width,
height=height,
v_value=get_v(),
r_value=get_r(),
colors=state_colors.value
)
return filepath
pattern_type.change(
fn=lambda x: gr.update(visible=(x == "color")),
inputs=pattern_type,
outputs=color_row
)
add_button.click(
fn=_add_color,
inputs=[color_picker, state_colors],
outputs=[state_colors, color_display]
)
delete_colors_button.click(
fn=lambda x: ([], "<div>Add Colors</div>"),
inputs=[],
outputs=[state_colors, color_display]
)
reset_colors_button.click(
fn=reset_colors,
inputs=[],
outputs=[state_colors,color_display]
)
generate_button.click(
fn=_generate_pattern_from_state,
inputs=[pattern_type, width_slider, height_slider, v_value_slider, r_value_slider, state_colors],
outputs=target_image, scroll_to_output=True
)
v_value_slider.input(
lambda x: config.find_nearest_prime(x),
inputs=v_value_slider,
outputs=v_value_slider
)
v_value_slider.release(
lambda x: config.find_nearest_prime(x),
inputs=v_value_slider,
outputs=v_value_slider, queue=False
)
return {
"target_image": target_image,
"run_generate_hex_pattern": run_generate_hex_pattern,
"width_slider": width_slider,
"height_slider": height_slider
}
|