Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
import torch
|
5 |
import json
|
6 |
from datetime import datetime
|
@@ -10,7 +10,7 @@ HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
|
10 |
|
11 |
# Load Llama 3.2 (QLoRA) Model on CPU
|
12 |
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
|
13 |
-
tokenizer =
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
15 |
MODEL_NAME,
|
16 |
token=HUGGINGFACE_TOKEN,
|
@@ -19,7 +19,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
19 |
|
20 |
# Load Llama Guard for content moderation on CPU
|
21 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
22 |
-
guard_tokenizer =
|
23 |
guard_model = AutoModelForCausalLM.from_pretrained(
|
24 |
LLAMA_GUARD_NAME,
|
25 |
token=HUGGINGFACE_TOKEN,
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
from transformers import LlamaTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
import json
|
6 |
from datetime import datetime
|
|
|
10 |
|
11 |
# Load Llama 3.2 (QLoRA) Model on CPU
|
12 |
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
|
13 |
+
tokenizer = LlamaTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN)
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
15 |
MODEL_NAME,
|
16 |
token=HUGGINGFACE_TOKEN,
|
|
|
19 |
|
20 |
# Load Llama Guard for content moderation on CPU
|
21 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
22 |
+
guard_tokenizer = LlamaTokenizer.from_pretrained(LLAMA_GUARD_NAME, token=HUGGINGFACE_TOKEN)
|
23 |
guard_model = AutoModelForCausalLM.from_pretrained(
|
24 |
LLAMA_GUARD_NAME,
|
25 |
token=HUGGINGFACE_TOKEN,
|