Update app.py
Browse files
app.py
CHANGED
@@ -18,58 +18,29 @@ def load_llama_model(model_path, is_guard=False):
|
|
18 |
print(f"Loading model: {model_path}")
|
19 |
|
20 |
try:
|
21 |
-
#
|
22 |
token = os.getenv("HUGGINGFACE_TOKEN")
|
23 |
if not token:
|
24 |
-
print("Warning: HUGGINGFACE_TOKEN not
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
# First, try standard loading method with token handling
|
28 |
-
try:
|
29 |
-
tokenizer = LlamaTokenizer.from_pretrained(
|
30 |
-
BASE_MODEL,
|
31 |
-
use_auth_token=token # Use this parameter instead of token=
|
32 |
-
)
|
33 |
-
|
34 |
-
model = AutoModelForCausalLM.from_pretrained(
|
35 |
-
model_path,
|
36 |
-
use_auth_token=token,
|
37 |
-
torch_dtype=torch.float16,
|
38 |
-
low_cpu_mem_usage=True
|
39 |
-
)
|
40 |
-
|
41 |
-
except Exception as e:
|
42 |
-
print(f"Standard loading failed: {e}, trying alternative method...")
|
43 |
-
|
44 |
-
# Fall back to alternative loading method
|
45 |
-
# Download files first to ensure they exist locally
|
46 |
-
from huggingface_hub import snapshot_download
|
47 |
-
|
48 |
-
cache_dir = snapshot_download(
|
49 |
-
BASE_MODEL,
|
50 |
-
use_auth_token=token,
|
51 |
-
local_dir="./model_cache"
|
52 |
-
)
|
53 |
-
|
54 |
-
# Load tokenizer from local files
|
55 |
-
tokenizer = LlamaTokenizer.from_pretrained(
|
56 |
-
cache_dir,
|
57 |
-
local_files_only=True
|
58 |
-
)
|
59 |
-
|
60 |
-
# Load model from local files
|
61 |
-
model = AutoModelForCausalLM.from_pretrained(
|
62 |
-
model_path,
|
63 |
-
use_auth_token=token,
|
64 |
-
torch_dtype=torch.float16,
|
65 |
-
low_cpu_mem_usage=True
|
66 |
-
)
|
67 |
-
|
68 |
# Load QLoRA adapter if applicable
|
69 |
if not is_guard and "QLORA" in model_path:
|
70 |
print("Loading QLoRA adapter...")
|
71 |
-
from peft import PeftConfig, PeftModel
|
72 |
-
|
73 |
model = PeftModel.from_pretrained(
|
74 |
model,
|
75 |
model_path,
|
|
|
18 |
print(f"Loading model: {model_path}")
|
19 |
|
20 |
try:
|
21 |
+
# Get token from secrets
|
22 |
token = os.getenv("HUGGINGFACE_TOKEN")
|
23 |
if not token:
|
24 |
+
print("Warning: HUGGINGFACE_TOKEN not found in environment variables")
|
25 |
+
else:
|
26 |
+
print("HUGGINGFACE_TOKEN found in environment")
|
27 |
+
|
28 |
+
# Use the parameter name 'use_auth_token' instead of 'token'
|
29 |
+
tokenizer = LlamaTokenizer.from_pretrained(
|
30 |
+
BASE_MODEL,
|
31 |
+
use_auth_token=token
|
32 |
+
)
|
33 |
+
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(
|
35 |
+
model_path,
|
36 |
+
use_auth_token=token,
|
37 |
+
torch_dtype=torch.float16,
|
38 |
+
low_cpu_mem_usage=True
|
39 |
+
)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Load QLoRA adapter if applicable
|
42 |
if not is_guard and "QLORA" in model_path:
|
43 |
print("Loading QLoRA adapter...")
|
|
|
|
|
44 |
model = PeftModel.from_pretrained(
|
45 |
model,
|
46 |
model_path,
|