|
import os |
|
import json |
|
from flask import Flask, render_template, request, jsonify |
|
from flask_cors import CORS |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from dotenv import load_dotenv |
|
import requests |
|
|
|
app = Flask(__name__) |
|
CORS(app) |
|
|
|
|
|
model = None |
|
tokenizer = None |
|
|
|
|
|
def load_model(): |
|
global model, tokenizer |
|
try: |
|
model_name = "mistralai/Mistral-7B-Instruct-v0.3" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
print("Загрузка модели на GPU...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
load_in_8bit=True |
|
) |
|
else: |
|
print("GPU не обнаружен. Загрузка модели на CPU (это может быть медленно)...") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float32, |
|
low_cpu_mem_usage=True, |
|
device_map="auto" |
|
) |
|
print("Модель успешно загружена!") |
|
except Exception as e: |
|
print(f"Ошибка при загрузке модели: {e}") |
|
model = None |
|
tokenizer = None |
|
|
|
|
|
@app.before_request |
|
def before_request(): |
|
global model, tokenizer |
|
if model is None or tokenizer is None: |
|
load_model() |
|
|
|
|
|
from dotenv import load_dotenv |
|
import requests |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
API_KEY = os.getenv("MISTRAL_API_KEY") |
|
API_URL = os.getenv("MISTRAL_API_URL", "https://api.mistral.ai/v1/") |
|
|
|
|
|
def generate_response_api(prompt, max_length=1024): |
|
if not API_KEY: |
|
return "Ошибка: API ключ не найден. Пожалуйста, добавьте MISTRAL_API_KEY в файл .env" |
|
|
|
headers = { |
|
"Authorization": f"Bearer {API_KEY}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
data = { |
|
"model": "mistral-medium", |
|
"messages": [ |
|
{"role": "user", "content": prompt} |
|
], |
|
"max_tokens": max_length, |
|
"temperature": 0.7, |
|
"top_p": 0.9 |
|
} |
|
|
|
try: |
|
response = requests.post(f"{API_URL}chat/completions", headers=headers, json=data) |
|
response.raise_for_status() |
|
result = response.json() |
|
return result["choices"][0]["message"]["content"] |
|
except Exception as e: |
|
return f"Ошибка при обращении к API: {str(e)}" |
|
|
|
|
|
def generate_response(prompt, max_length=1024): |
|
return generate_response_api(prompt, max_length) |
|
|
|
|
|
|
|
|
|
@app.route('/') |
|
def index(): |
|
return render_template('index.html') |
|
|
|
@app.route('/api/chat', methods=['POST']) |
|
def chat(): |
|
data = request.json |
|
prompt = data.get('prompt', '') |
|
|
|
if not prompt: |
|
return jsonify({"error": "Пустой запрос"}), 400 |
|
|
|
try: |
|
response = generate_response(prompt) |
|
return jsonify({"response": response}) |
|
except Exception as e: |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
@app.route('/api/code', methods=['POST']) |
|
def code(): |
|
data = request.json |
|
prompt = data.get('prompt', '') |
|
language = data.get('language', 'python') |
|
|
|
if not prompt: |
|
return jsonify({"error": "Пустой запрос"}), 400 |
|
|
|
|
|
code_prompt = f"Напиши код на языке {language} для решения следующей задачи: {prompt}" |
|
|
|
try: |
|
response = generate_response(code_prompt) |
|
return jsonify({"code": response}) |
|
except Exception as e: |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
if __name__ == '__main__': |
|
app.run(debug=True, port=5000) |