Shunfeng Zheng commited on
Commit
2b79b4e
·
verified ·
1 Parent(s): 4599d71

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +226 -34
app.py CHANGED
@@ -7,14 +7,238 @@ import pandas as pd
7
 
8
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  nlp = spacy.load("en_core_web_md")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def process_api(input_text):
12
  # 这里编写实际的后端处理逻辑
13
 
14
  return {
15
  "status": "success",
16
  # "result": f"Processed: {input_text.upper()}",
17
- "result": f"Processed: {nlp(input_text).to_json()}",
 
18
  "timestamp": time.time()
19
  }
20
 
@@ -25,36 +249,4 @@ gr.Interface(
25
  outputs="json",
26
  title="Backend API",
27
  allow_flagging="never"
28
- ).launch()
29
-
30
-
31
-
32
-
33
- # nlp = spacy.load("en_core_web_md")
34
- # HTML_WRAPPER = "<div style='padding: 10px;'>{}</div>"
35
-
36
- # def show_spatial_ent_table(doc):
37
- # rows = []
38
- # for i, ent in enumerate(doc.ents):
39
- # rows.append(f"<tr><td>{i+1}</td><td>{ent.text}</td><td>{ent.label_}</td></tr>")
40
- # table_html = "<table border='1'><tr><th>Index</th><th>Entity</th><th>Label</th></tr>" + "".join(rows) + "</table>"
41
- # return table_html
42
-
43
- # def process_api(input_text):
44
- # doc = nlp(input_text)
45
- # html_ent = displacy.render(doc, style="ent")
46
- # html_ent = HTML_WRAPPER.format(html_ent.replace("\n", ""))
47
- # html_table = show_spatial_ent_table(doc)
48
- # final_html = html_ent + "<br>" + html_table
49
- # return {
50
- # "data": [{"html": final_html}],
51
- # "timestamp": time.time()
52
- # }
53
-
54
- # gr.Interface(
55
- # fn=process_api,
56
- # inputs="text",
57
- # outputs="json",
58
- # allow_flagging="never",
59
- # title="Backend API"
60
- # ).launch()
 
7
 
8
 
9
 
10
+ # nlp = spacy.load("en_core_web_md")
11
+ # def process_api(input_text):
12
+ # # 这里编写实际的后端处理逻辑
13
+
14
+ # return {
15
+ # "status": "success",
16
+ # # "result": f"Processed: {input_text.upper()}",
17
+ # "result": f"Processed: {nlp(input_text).to_json()}",
18
+ # "timestamp": time.time()
19
+ # }
20
+
21
+ # # 设置API格式为JSON
22
+ # gr.Interface(
23
+ # fn=process_api,
24
+ # inputs="text",
25
+ # outputs="json",
26
+ # title="Backend API",
27
+ # allow_flagging="never"
28
+ # ).launch()
29
+
30
+
31
+
32
+
33
+ # nlp = spacy.import gradio as gr
34
+ import time
35
+ import spacy
36
+ from spacy.tokens import Span, Doc, Token
37
+ from spacy import displacy
38
+ import streamlit as st
39
+ import pandas as pd
40
+ from spacy.language import Language
41
+ import llm_ent_extract
42
+ import regex_spatial
43
+ import re
44
+
45
+
46
+ colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"}
47
+ options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors}
48
+ HTML_WRAPPER = """<div style="overflow-x: auto; border: none solid #a6e22d; border-radius: 0.25rem; padding: 1rem">{}</div>"""
49
+ BASE_URL = ""
50
+ model = ""
51
+ types = ""
52
  nlp = spacy.load("en_core_web_md")
53
+ gpe_selected = 'GPE'
54
+ loc_selected = 'loc'
55
+ rse_selected = 'rse'
56
+ rse_id = "rse_id"
57
+ def set_selected_entities(doc):
58
+ global gpe_selected, loc_selected, rse_selected, model
59
+ ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
60
+
61
+ doc.ents = ents
62
+ return doc
63
+
64
+ def update_entities(doc, entity_texts, replace=True):
65
+ """
66
+ 根据给定的文本内容标注实体,并直接修改 doc.ents。
67
+
68
+ :param doc: spaCy 解析后的 Doc 对象
69
+ :param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别
70
+ :param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的
71
+ """
72
+ new_ents = list(doc.ents) if not replace else [] # 如果 replace=False,保留已有实体
73
+
74
+ for ent_text, ent_label in entity_texts.items():
75
+ start = doc.text.find(ent_text) # 在全文中查找文本位置
76
+ if start != -1:
77
+ start_token = len(doc.text[:start].split()) # 计算起始 token 索引
78
+ end_token = start_token + len(ent_text.split()) # 计算结束 token 索引
79
+
80
+ if start_token < len(doc) and end_token <= len(doc): # 确保索引不越界
81
+ new_ent = Span(doc, start_token, end_token, label=ent_label)
82
+ new_ents.append(new_ent)
83
+
84
+ doc.set_ents(new_ents) # 更新 doc.ents
85
+ def find_ent_by_regex(doc, sentence, ent, regex):
86
+ global id
87
+
88
+ if id == "":
89
+ id = ent.text
90
+ for match in re.finditer(regex, doc.text):
91
+ start, end = match.span()
92
+ if(start>= sentence.start_char and start<= sentence.end_char):
93
+ span = doc.char_span(start, end)
94
+ if span is not None:
95
+ id = span.text +"_"+ id
96
+ if(start > ent.end_char):
97
+ ent.end_char = end
98
+ else:
99
+ ent.start_char = start
100
+
101
+ return ent
102
+
103
+ return ent
104
+ def set_extension():
105
+ Span.set_extension(rse_id, default="", force=True)
106
+ Doc.set_extension(rse_id, default="", force=True)
107
+ Token.set_extension(rse_id, default="", force=True)
108
+ def get_level1(doc, sentence, ent):
109
+ return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex())
110
+
111
+ def get_level2(doc, sentence, ent):
112
+ return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex())
113
+
114
+ def get_level3(doc, sentence, ent):
115
+ return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex())
116
+ def get_relative_entity(doc, sentence, ent):
117
+ global id
118
+
119
+ id = ""
120
+ rel_entity = get_level1(doc, sentence, ent)
121
+ # print(1111 ,rel_entity)
122
+ rel_entity = get_level2(doc, sentence, rel_entity)
123
+ # print(2222 ,rel_entity)
124
+ rel_entity = get_level3(doc, sentence, rel_entity)
125
+ # print(3333 ,rel_entity)
126
+
127
+ if("_" in id):
128
+ rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE")
129
+ rel_entity._.rse_id = id
130
+
131
+ # print(id, 'idid')
132
+ # print(rel_entity._.rse_id, '._._')
133
+
134
+ return rel_entity
135
+ rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_)
136
+ rel_entity._.rse_id = id
137
+ # print(4444 ,rel_entity)
138
+ return rel_entity
139
+
140
+ @Language.component("spatial_pipeline")
141
+ def get_spatial_ent(doc):
142
+ set_extension()
143
+ new_ents = []
144
+ # ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"] # 筛选出ase
145
+
146
+
147
+ # LLM 输出
148
+ # GPE = '[###Pyrmont###, ###Glebe###]' # LLM 输出的实体
149
+ GPE = llm_ent_extract.extract_GPE(doc.text) # LLM 输出的实体
150
+ print(doc.text, 'llmin')
151
+ print(GPE, 'llout')
152
+
153
+ GPE = llm_ent_extract.extract(GPE, 'GPE')
154
+ print(GPE, 'llmout2')
155
+ update_entities(doc, GPE, True)
156
+ ents = doc.ents
157
+ print(ents, 'eee')
158
+ end = None
159
+ for ent in ents:
160
+
161
+ if ent.end != len(doc):
162
+ next_token = doc[ent.end]
163
+ if end is not None:
164
+ start = end
165
+ else:
166
+ start = ent.sent.start
167
+ if next_token.text.lower() in regex_spatial.get_keywords():
168
+ end = next_token.i
169
+ else:
170
+ end = ent.end
171
+
172
+ else:
173
+ start = ent.sent.start
174
+ end = ent.end
175
+
176
+ # print(doc, '//',start, '//', end, 999888)
177
+ # print(doc[start],'//', doc[end])
178
+ # print(ents, 999)
179
+
180
+
181
+ rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent)
182
+ # print(doc.ents[0]._.rse_id, '._._2')
183
+
184
+
185
+ # print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id)
186
+ new_ents.append(rsi_ent)
187
+
188
+ doc.ents = new_ents
189
+ return doc
190
+ def extract_spatial_entities(text):
191
+
192
+
193
+ nlp.add_pipe("spatial_pipeline", after="ner")
194
+ doc = nlp(text)
195
+
196
+ # 分句处理
197
+ sent_ents = []
198
+ sent_texts = []
199
+ sent_rse_id = []
200
+ offset = 0 # 记录当前 token 偏移量
201
+ sent_start_positions = [0] # 记录句子信息
202
+ doc_copy = doc.copy() # 用于展示方程组合
203
+ for sent in doc.sents:
204
+
205
+ sent_doc = nlp(sent.text) # 逐句处理
206
+ sent_doc = set_selected_entities(sent_doc) # 这里处理实体
207
+ sent_texts.append(sent_doc.text)
208
+
209
+ for ent in sent_doc.ents:
210
+ sent_rse_id.append(ent._.rse_id)
211
+ # **调整每个实体的索引,使其匹配完整文本**
212
+ for ent in sent_doc.ents:
213
+ new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
214
+ sent_ents.append(new_ent)
215
+
216
+ offset += len(sent) # 更新偏移量
217
+ sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点
218
+ # **创建新 Doc**
219
+ final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
220
+ for i in sent_start_positions: # 手动标记句子起始点
221
+ if i < len(final_doc):
222
+ final_doc[i].is_sent_start = True
223
+ # **设置实体**
224
+ final_doc.set_ents(sent_ents)
225
+
226
+ for i in range(len(sent_rse_id)):
227
+ final_doc.ents[i]._.rse_id = sent_rse_id[i]
228
+
229
+ doc = final_doc
230
+ return doc.to_json()
231
+
232
+
233
+
234
  def process_api(input_text):
235
  # 这里编写实际的后端处理逻辑
236
 
237
  return {
238
  "status": "success",
239
  # "result": f"Processed: {input_text.upper()}",
240
+ # "result": f"Processed: {nlp(input_text).to_json()}",
241
+ "result": f"Processed: {extract_spatial_entities(input_text)}",
242
  "timestamp": time.time()
243
  }
244
 
 
249
  outputs="json",
250
  title="Backend API",
251
  allow_flagging="never"
252
+ ).launch()