import streamlit as st from spacy import displacy import spacy import geospacy from PIL import Image import base64 import sys import pandas as pd from spacy.tokens import Span, Doc, Token from utils import geoutil import urllib.parse import os import requests from spacy.tokens import Doc from spacy.lang.en import English import pydantic print("Pydantic version:", pydantic.__version__) API_TOKEN = os.getenv('API_TOKEN1') BACKEND_URL = "https://SpatialWebAgent-dockerb2.hf.space/api/predict/" def call_backend(input_text): try: headers = { "Authorization": f"Bearer {API_TOKEN}" } response = requests.post( BACKEND_URL, headers=headers, json={"data": [input_text]}, timeout=10 ) if response.status_code == 200: return response.json() # ✅ 保留原始 JSON 对象 (dict) return {"error": f"❌ Backend Error (HTTP {response.status_code})"} except Exception as e: return {"error": f"⚠️ Connection Error: {str(e)}"} colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"} options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors} HTML_WRAPPER = """
{}
""" model = "" gpe_selected = "GPE" loc_selected = "LOC" rse_selected = "RSE" types = "" #BASE_URL = "http://localhost:8080/" BASE_URL = "" def set_header(): LOGO_IMAGE = "tetis-1.png" st.markdown( """ """, unsafe_allow_html=True ) st.markdown( f"""

GeOspaCy

""", unsafe_allow_html=True ) def set_side_menu(): global gpe_selected, loc_selected, rse_selected, model, types types ="" params = st.query_params # params = st.query_params # print(params, 777) st.sidebar.markdown("## Spacy Model") st.sidebar.markdown("You can **select** the values of the *spacy model* from Dropdown.") models = ['en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf'] if "model" in params: default_ix = models.index(params["model"][0]) else: default_ix = models.index('en_core_web_sm') model = st.sidebar.selectbox('Spacy Model',models, index=default_ix) st.sidebar.markdown("## Spatial Entity Labels") st.sidebar.markdown("**Mark** the Spatial Entities you want to extract?") tpes = "" if "type" in params: tpes = params['type'][0] if "g" in tpes: gpe = st.sidebar.checkbox('GPE', value = True) else: gpe = st.sidebar.checkbox('GPE') if "l" in tpes: loc = st.sidebar.checkbox('LOC', value = True) else: loc = st.sidebar.checkbox('LOC') if "r" in tpes: rse = st.sidebar.checkbox('RSE', value = True) else: rse = st.sidebar.checkbox('RSE') if(gpe): gpe_selected ="GPE" types+="g" if(loc): loc_selected ="LOC" types+="l" if(rse): rse_selected ="RSE" types+="r" def set_input(): params = st.query_params # params = st.query_params if "text" not in params: text = st.text_area("Input unstructured text:", "") else: text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0]) if(st.button("Extract")): return text def set_selected_entities(doc): global gpe_selected, loc_selected, rse_selected, model ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected] doc.ents = ents return doc def extract_spatial_entities(text): Span.set_extension("rse_id", default="", force=True) api_result = call_backend(text) print(api_result, 'dadada') st.markdown(api_result) # st.markdown(doc_element) doc_element = api_result["data"][0] nlp = English() nlp.add_pipe("sentencizer") doc = Doc(nlp.vocab).from_json(doc_element) doc = nlp.get_pipe("sentencizer")(doc) # st.markdown(type(doc)) for ent_ext in doc_element["ents_ext"]: for ent in doc.ents: if ent.start_char == ent_ext["start"] and ent.end_char == ent_ext["end"]: ent._.rse_id = ent_ext["rse_id"] doc = set_selected_entities(doc) # doc.to_disk("saved_doc.spacy") doc.to_disk("/tmp/saved_doc.spacy") html = displacy.render(doc,style="ent", options = options) html = html.replace("\n","") st.write(HTML_WRAPPER.format(html),unsafe_allow_html=True) show_spatial_ent_table(doc, text) show_sentence_selector_table(doc) pass def show_sentence_selector_table(doc_copy): st.markdown("**______________________________________________________________________________________**") st.markdown("**Sentence Selector for Geographic Composition**") sentences = list(doc_copy.sents) rows = [] for idx, sent in enumerate(sentences): sentence_text = sent.text.strip() url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text) new_row = { 'Sr.': idx + 1, 'sentence': sentence_text, 'Select': f'Select this sentence' } rows.append(new_row) df = pd.DataFrame(rows) st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True) def show_spatial_ent_table(doc, text): global types if len(doc.ents) > 0: st.markdown("**______________________________________________________________________________________**") st.markdown("**Spatial Entities List**") df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson']) rows = [] for ent in doc.ents: url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id print(url_map, 'uuurrr') print(ent._.rse_id, 'pppp') url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id new_row = { 'Sr.': len(rows) + 1, 'entity': ent.text, 'label': ent.label_, 'Map': f'View', 'GEOJson': f'View' } rows.append(new_row) df = pd.DataFrame(rows) st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True) def set_header(): # tetis Geospacy LOGO LOGO_IMAGE = "title.jpg" st.markdown( """ """, unsafe_allow_html=True ) st.markdown( f"""

SpatialWebAgent

""", unsafe_allow_html=True ) def set_side_menu(): global gpe_selected, loc_selected, rse_selected, model, types types = "" params = st.query_params st.sidebar.markdown("## Deployment Method") st.sidebar.markdown("You can select the deployment method for the model.") deployment_options = ["API", "Local deployment"] use_local_model = st.sidebar.radio("Choose deployment method:", deployment_options, index=0) == "Local deployment" if use_local_model: local_model_path = st.sidebar.text_input("Enter local model path:", "") st.sidebar.markdown("## LLM Model") st.sidebar.markdown("You can **select** different *LLM model* powered by API.") models = ['Llama-3-8B', 'Mistral-7B-0.3', 'Gemma-2-10B', 'GPT-4o', 'Gemini Pro', 'Deepseek-R1', 'en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf'] if "model" in params: default_ix = models.index(params["model"][0]) else: default_ix = models.index('GPT-4o') model = st.sidebar.selectbox('LLM Model', models, index=default_ix) st.sidebar.markdown("## Spatial Entity Labels") st.sidebar.markdown("Please **Mark** the Spatial Entities you want to extract.") tpes = "" if "type" in params: tpes = params['type'][0] st.sidebar.markdown("### Absolute Spatial Entity:") if "g" in tpes: gpe = st.sidebar.checkbox('GPE', value=True) else: gpe = st.sidebar.checkbox('GPE') if "l" in tpes: loc = st.sidebar.checkbox('LOC', value=True) else: loc = st.sidebar.checkbox('LOC') st.sidebar.markdown("### Relative Spatial Entity:") if "r" in tpes: rse = st.sidebar.checkbox('RSE', value=True) else: rse = st.sidebar.checkbox('RSE') if (gpe): gpe_selected = "GPE" types += "g" if (loc): loc_selected = "LOC" types += "l" if (rse): rse_selected = "RSE" types += "r" def main(): global gpe_selected, loc_selected, rse_selected, model set_header() set_side_menu() text = set_input() if(text is not None): extract_spatial_entities(text) elif "text" in st.session_state: text = st.session_state.text extract_spatial_entities(text) if __name__ == '__main__': main()