import streamlit as st from spacy import displacy import spacy import geospacy from PIL import Image import base64 import sys import pandas as pd # import en_core_web_md from spacy.tokens import Span, Doc, Token from utils import geoutil import urllib.parse import os import requests API_TOKEN = 'hf_' BACKEND_URL = "https://dsbb0707-dockerb2.hf.space/api/predict/" def call_backend(input_text): try: headers = { "Authorization": f"Bearer {API_TOKEN}" } response = requests.post( BACKEND_URL, headers=headers, json={"data": [input_text]}, timeout=10 ) if response.status_code == 200: result = response.json()["data"][0] return f"✅ {result['result']}\n⏰ {result['timestamp']}" return f"❌ Backend Error (HTTP {response.status_code})" except Exception as e: return f"⚠️ Connection Error: {str(e)}" colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"} options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors} HTML_WRAPPER = """
{}
""" model = "" gpe_selected = "GPE" loc_selected = "LOC" rse_selected = "RSE" types = "" #BASE_URL = "http://localhost:8080/" BASE_URL = "" def set_header(): LOGO_IMAGE = "tetis-1.png" st.markdown( """ """, unsafe_allow_html=True ) st.markdown( f"""

GeOspaCy

""", unsafe_allow_html=True ) def set_side_menu(): global gpe_selected, loc_selected, rse_selected, model, types types ="" params = st.experimental_get_query_params() # params = st.query_params # print(params, 777) st.sidebar.markdown("## Spacy Model") st.sidebar.markdown("You can **select** the values of the *spacy model* from Dropdown.") models = ['en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf'] if "model" in params: default_ix = models.index(params["model"][0]) else: default_ix = models.index('en_core_web_sm') model = st.sidebar.selectbox('Spacy Model',models, index=default_ix) st.sidebar.markdown("## Spatial Entity Labels") st.sidebar.markdown("**Mark** the Spatial Entities you want to extract?") tpes = "" if "type" in params: tpes = params['type'][0] if "g" in tpes: gpe = st.sidebar.checkbox('GPE', value = True) else: gpe = st.sidebar.checkbox('GPE') if "l" in tpes: loc = st.sidebar.checkbox('LOC', value = True) else: loc = st.sidebar.checkbox('LOC') if "r" in tpes: rse = st.sidebar.checkbox('RSE', value = True) else: rse = st.sidebar.checkbox('RSE') if(gpe): gpe_selected ="GPE" types+="g" if(loc): loc_selected ="LOC" types+="l" if(rse): rse_selected ="RSE" types+="r" def set_input(): params = st.experimental_get_query_params() # params = st.query_params if "text" not in params: text = st.text_area("Input unstructured text:", "") else: text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0]) if(st.button("Extract")): # return 'France has detected a highly pathogenic strain of bird flu in a pet shop near Paris, days after an identical outbreak in one of Corsica’s main cities.' return 'I would like to know where is the area between Burwood and Glebe. Pyrmont.' return '5 km east of Burwood. 3 km south of Glebe. Between Pyrmont and Glebe.' # return 'Between Burwood and Pyrmont.' # return 'Between Burwood and Glebe.' # return 'Between Burwood and Darling Harbour.' # return 'Between China and USA.' # return 'The Burwood city.' # text = "New York is north of Washington. Between Burwood and Pyrmont city." return text def set_selected_entities(doc): global gpe_selected, loc_selected, rse_selected, model ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected] doc.ents = ents return doc def extract_spatial_entities(text): # # nlp = en_core_web_md.load() # # nlp = spacy.load("en_core_web_md") # # nlp.add_pipe("spatial_pipeline", after="ner") # # doc = nlp(text) # # doc = set_selected_entities(doc) # # html = displacy.render(doc, style="ent", options=options) # # html = html.replace("\n", "") # # st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True) # # show_spatial_ent_table(doc, text) # nlp = spacy.load("en_core_web_md") ##### # nlp.add_pipe("spatial_pipeline", after="ner") # doc = nlp(text) # # 分句处理 # sent_ents = [] # sent_texts = [] # sent_rse_id = [] # offset = 0 # 记录当前 token 偏移量 # sent_start_positions = [0] # 记录句子信息 # doc_copy = doc.copy() # 用于展示方程组合 # for sent in doc.sents: # sent_doc = nlp(sent.text) # 逐句处理 # sent_doc = set_selected_entities(sent_doc) # 这里处理实体 # sent_texts.append(sent_doc.text) # for ent in sent_doc.ents: # sent_rse_id.append(ent._.rse_id) # # **调整每个实体的索引,使其匹配完整文本** # for ent in sent_doc.ents: # new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_) # sent_ents.append(new_ent) # offset += len(sent) # 更新偏移量 # sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点 # # **创建新 Doc** # final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc]) # for i in sent_start_positions: # 手动标记句子起始点 # if i < len(final_doc): # final_doc[i].is_sent_start = True # # **设置实体** # final_doc.set_ents(sent_ents) # for i in range(len(sent_rse_id)): # final_doc.ents[i]._.rse_id = sent_rse_id[i] # print(doc.ents[0].sent, '原始') # doc = final_doc # print(doc.ents[0].sent, '新') # # 分句处理完毕 # # doc = set_selected_entities(doc) # # doc.to_disk("saved_doc.spacy") # doc.to_disk("/tmp/saved_doc.spacy") api_result = call_backend(text) st.markdown(api_result) st.text_area(api_result) # html = displacy.render(doc,style="ent", options = options) # html = html.replace("\n","") # st.write(HTML_WRAPPER.format(html),unsafe_allow_html=True) # show_spatial_ent_table(doc, text) # st.markdown("123123") # show_sentence_selector_table(doc_copy) pass def show_sentence_selector_table(doc_copy): st.markdown("**______________________________________________________________________________________**") st.markdown("**Sentence Selector for Geographic Composition**") # 提取句子 sentences = list(doc_copy.sents) # 构建表格数据 rows = [] for idx, sent in enumerate(sentences): sentence_text = sent.text.strip() # 生成跳转链接(定位到Tagger) url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text) new_row = { 'Sr.': idx + 1, 'sentence': sentence_text, 'Select': f'Select this sentence' } rows.append(new_row) # 转为 DataFrame 并渲染为 HTML df = pd.DataFrame(rows) st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True) def show_spatial_ent_table(doc, text): global types if len(doc.ents) > 0: st.markdown("**______________________________________________________________________________________**") st.markdown("**Spatial Entities List**") # 初始化一个空 DataFrame df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson']) rows = [] # 用于存储所有行 for ent in doc.ents: url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id print(url_map, 'uuurrr') print(ent._.rse_id, 'pppp') url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id # 创建新行 new_row = { 'Sr.': len(rows) + 1, 'entity': ent.text, 'label': ent.label_, 'Map': f'View', 'GEOJson': f'View' } rows.append(new_row) # 将新行添加到列表中 # 将所有行转为 DataFrame df = pd.DataFrame(rows) # 使用 Streamlit 显示 HTML 表格 st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True) # params = st.experimental_get_query_params() # params = st.query_params # ase, level_1, level_2, level_3 = geoutil.get_ent(params["entity"][0]) # print(geoutil.get_ent(params), 'ppppp') def set_header(): # tetis Geospacy LOGO LOGO_IMAGE = "title.jpg" st.markdown( """ """, unsafe_allow_html=True ) st.markdown( f"""

SpatialParse

""", unsafe_allow_html=True ) def set_side_menu(): global gpe_selected, loc_selected, rse_selected, model, types types = "" params = st.experimental_get_query_params() st.sidebar.markdown("## Deployment Method") st.sidebar.markdown("You can select the deployment method for the model.") deployment_options = ["API", "Local deployment"] use_local_model = st.sidebar.radio("Choose deployment method:", deployment_options, index=0) == "Local deployment" if use_local_model: local_model_path = st.sidebar.text_input("Enter local model path:", "") st.sidebar.markdown("## LLM Model") st.sidebar.markdown("You can **select** different *LLM model* powered by API.") models = ['Llama-3-8B', 'Mistral-7B-0.3', 'Gemma-2-10B', 'GPT-4o', 'Gemini Pro', 'Deepseek-R1', 'en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf'] if "model" in params: default_ix = models.index(params["model"][0]) else: default_ix = models.index('GPT-4o') model = st.sidebar.selectbox('LLM Model', models, index=default_ix) st.sidebar.markdown("## Spatial Entity Labels") st.sidebar.markdown("Please **Mark** the Spatial Entities you want to extract.") tpes = "" if "type" in params: tpes = params['type'][0] st.sidebar.markdown("### Absolute Spatial Entity:") if "g" in tpes: gpe = st.sidebar.checkbox('GPE', value=True) else: gpe = st.sidebar.checkbox('GPE') if "l" in tpes: loc = st.sidebar.checkbox('LOC', value=True) else: loc = st.sidebar.checkbox('LOC') st.sidebar.markdown("### Relative Spatial Entity:") if "r" in tpes: rse = st.sidebar.checkbox('RSE', value=True) else: rse = st.sidebar.checkbox('RSE') if (gpe): gpe_selected = "GPE" types += "g" if (loc): loc_selected = "LOC" types += "l" if (rse): rse_selected = "RSE" types += "r" def main(): global gpe_selected, loc_selected, rse_selected, model #print(displacy.templates.TPL_ENT) set_header() set_side_menu() text = set_input() if(text is not None): extract_spatial_entities(text) elif "text" in st.session_state: text = st.session_state.text extract_spatial_entities(text) if __name__ == '__main__': main()