Spaces:
Running
Running
Shunfeng Zheng
commited on
Upload 1_SpatialParse.py
Browse files- 1_SpatialParse.py +404 -0
1_SpatialParse.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from spacy import displacy
|
3 |
+
import spacy
|
4 |
+
import geospacy
|
5 |
+
from PIL import Image
|
6 |
+
import base64
|
7 |
+
import sys
|
8 |
+
import pandas as pd
|
9 |
+
# import en_core_web_md
|
10 |
+
from spacy.tokens import Span, Doc, Token
|
11 |
+
from utils import geoutil
|
12 |
+
import llm_coding
|
13 |
+
import urllib.parse
|
14 |
+
|
15 |
+
|
16 |
+
colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"}
|
17 |
+
options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors}
|
18 |
+
|
19 |
+
HTML_WRAPPER = """<div style="overflow-x: auto; border: none solid #a6e22d; border-radius: 0.25rem; padding: 1rem">{}</div>"""
|
20 |
+
model = ""
|
21 |
+
|
22 |
+
gpe_selected = "GPE"
|
23 |
+
loc_selected = "LOC"
|
24 |
+
rse_selected = "RSE"
|
25 |
+
|
26 |
+
types = ""
|
27 |
+
|
28 |
+
#BASE_URL = "http://localhost:8080/"
|
29 |
+
BASE_URL = ""
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def set_header():
|
34 |
+
LOGO_IMAGE = "tetis-1.png"
|
35 |
+
|
36 |
+
st.markdown(
|
37 |
+
"""
|
38 |
+
<style>
|
39 |
+
.container {
|
40 |
+
display: flex;
|
41 |
+
}
|
42 |
+
.logo-text {
|
43 |
+
font-weight:700 !important;
|
44 |
+
font-size:50px !important;
|
45 |
+
color: #f9a01b !important;
|
46 |
+
padding-left: 10px !important;
|
47 |
+
}
|
48 |
+
.logo-img {
|
49 |
+
float:right;
|
50 |
+
width: 28%;
|
51 |
+
height: 28%;
|
52 |
+
}
|
53 |
+
</style>
|
54 |
+
""",
|
55 |
+
unsafe_allow_html=True
|
56 |
+
)
|
57 |
+
st.markdown(
|
58 |
+
f"""
|
59 |
+
<div class="container">
|
60 |
+
<img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
|
61 |
+
<p class="logo-text">GeOspaCy</p>
|
62 |
+
</div>
|
63 |
+
""",
|
64 |
+
unsafe_allow_html=True
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
def set_side_menu():
|
70 |
+
|
71 |
+
global gpe_selected, loc_selected, rse_selected, model, types
|
72 |
+
types =""
|
73 |
+
params = st.experimental_get_query_params()
|
74 |
+
# params = st.query_params
|
75 |
+
# print(params, 777)
|
76 |
+
|
77 |
+
st.sidebar.markdown("## Spacy Model")
|
78 |
+
st.sidebar.markdown("You can **select** the values of the *spacy model* from Dropdown.")
|
79 |
+
models = ['en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf']
|
80 |
+
if "model" in params:
|
81 |
+
default_ix = models.index(params["model"][0])
|
82 |
+
else:
|
83 |
+
default_ix = models.index('en_core_web_sm')
|
84 |
+
model = st.sidebar.selectbox('Spacy Model',models, index=default_ix)
|
85 |
+
|
86 |
+
st.sidebar.markdown("## Spatial Entity Labels")
|
87 |
+
st.sidebar.markdown("**Mark** the Spatial Entities you want to extract?")
|
88 |
+
tpes = ""
|
89 |
+
if "type" in params:
|
90 |
+
tpes = params['type'][0]
|
91 |
+
|
92 |
+
if "g" in tpes:
|
93 |
+
gpe = st.sidebar.checkbox('GPE', value = True)
|
94 |
+
else:
|
95 |
+
gpe = st.sidebar.checkbox('GPE')
|
96 |
+
|
97 |
+
if "l" in tpes:
|
98 |
+
loc = st.sidebar.checkbox('LOC', value = True)
|
99 |
+
else:
|
100 |
+
loc = st.sidebar.checkbox('LOC')
|
101 |
+
if "r" in tpes:
|
102 |
+
rse = st.sidebar.checkbox('RSE', value = True)
|
103 |
+
else:
|
104 |
+
rse = st.sidebar.checkbox('RSE')
|
105 |
+
if(gpe):
|
106 |
+
gpe_selected ="GPE"
|
107 |
+
types+="g"
|
108 |
+
|
109 |
+
if(loc):
|
110 |
+
loc_selected ="LOC"
|
111 |
+
types+="l"
|
112 |
+
|
113 |
+
if(rse):
|
114 |
+
rse_selected ="RSE"
|
115 |
+
types+="r"
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
def set_input():
|
120 |
+
params = st.experimental_get_query_params()
|
121 |
+
# params = st.query_params
|
122 |
+
|
123 |
+
if "text" not in params:
|
124 |
+
text = st.text_area("Input unstructured text:", "")
|
125 |
+
else:
|
126 |
+
text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0])
|
127 |
+
if(st.button("Extract")):
|
128 |
+
|
129 |
+
# return 'France has detected a highly pathogenic strain of bird flu in a pet shop near Paris, days after an identical outbreak in one of Corsica’s main cities.'
|
130 |
+
|
131 |
+
|
132 |
+
return 'I would like to know where is the area between Burwood and Glebe. Pyrmont.'
|
133 |
+
return '5 km east of Burwood. 3 km south of Glebe. Between Pyrmont and Glebe.'
|
134 |
+
# return 'Between Burwood and Pyrmont.'
|
135 |
+
# return 'Between Burwood and Glebe.'
|
136 |
+
# return 'Between Burwood and Darling Harbour.'
|
137 |
+
# return 'Between China and USA.'
|
138 |
+
# return 'The Burwood city.'
|
139 |
+
# text = "New York is north of Washington. Between Burwood and Pyrmont city."
|
140 |
+
return text
|
141 |
+
|
142 |
+
def set_selected_entities(doc):
|
143 |
+
global gpe_selected, loc_selected, rse_selected, model
|
144 |
+
ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
|
145 |
+
|
146 |
+
doc.ents = ents
|
147 |
+
return doc
|
148 |
+
|
149 |
+
def extract_spatial_entities(text):
|
150 |
+
# nlp = en_core_web_md.load()
|
151 |
+
|
152 |
+
# nlp = spacy.load("en_core_web_md")
|
153 |
+
# nlp.add_pipe("spatial_pipeline", after="ner")
|
154 |
+
# doc = nlp(text)
|
155 |
+
# doc = set_selected_entities(doc)
|
156 |
+
# html = displacy.render(doc, style="ent", options=options)
|
157 |
+
# html = html.replace("\n", "")
|
158 |
+
# st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
|
159 |
+
# show_spatial_ent_table(doc, text)
|
160 |
+
|
161 |
+
nlp = spacy.load("en_core_web_md") #####
|
162 |
+
nlp.add_pipe("spatial_pipeline", after="ner")
|
163 |
+
doc = nlp(text)
|
164 |
+
|
165 |
+
# 分句处理
|
166 |
+
sent_ents = []
|
167 |
+
sent_texts = []
|
168 |
+
sent_rse_id = []
|
169 |
+
offset = 0 # 记录当前 token 偏移量
|
170 |
+
sent_start_positions = [0] # 记录句子信息
|
171 |
+
doc_copy = doc.copy() # 用于展示方程组合
|
172 |
+
for sent in doc.sents:
|
173 |
+
|
174 |
+
sent_doc = nlp(sent.text) # 逐句处理
|
175 |
+
sent_doc = set_selected_entities(sent_doc) # 这里处理实体
|
176 |
+
sent_texts.append(sent_doc.text)
|
177 |
+
|
178 |
+
for ent in sent_doc.ents:
|
179 |
+
sent_rse_id.append(ent._.rse_id)
|
180 |
+
# **调整每个实体的索引,使其匹配完整文本**
|
181 |
+
for ent in sent_doc.ents:
|
182 |
+
new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
|
183 |
+
sent_ents.append(new_ent)
|
184 |
+
|
185 |
+
offset += len(sent) # 更新偏移量
|
186 |
+
sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点
|
187 |
+
# **创建新 Doc**
|
188 |
+
final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
|
189 |
+
for i in sent_start_positions: # 手动标记句子起始点
|
190 |
+
if i < len(final_doc):
|
191 |
+
final_doc[i].is_sent_start = True
|
192 |
+
# **设置实体**
|
193 |
+
final_doc.set_ents(sent_ents)
|
194 |
+
|
195 |
+
for i in range(len(sent_rse_id)):
|
196 |
+
final_doc.ents[i]._.rse_id = sent_rse_id[i]
|
197 |
+
print(doc.ents[0].sent, '原始')
|
198 |
+
doc = final_doc
|
199 |
+
print(doc.ents[0].sent, '新')
|
200 |
+
# 分句处理完毕
|
201 |
+
|
202 |
+
# doc = set_selected_entities(doc)
|
203 |
+
doc.to_disk("saved_doc.spacy")
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
html = displacy.render(doc,style="ent", options = options)
|
209 |
+
html = html.replace("\n","")
|
210 |
+
st.write(HTML_WRAPPER.format(html),unsafe_allow_html=True)
|
211 |
+
show_spatial_ent_table(doc, text)
|
212 |
+
|
213 |
+
st.markdown("123123")
|
214 |
+
|
215 |
+
show_sentence_selector_table(doc_copy)
|
216 |
+
|
217 |
+
def show_sentence_selector_table(doc_copy):
|
218 |
+
st.markdown("**______________________________________________________________________________________**")
|
219 |
+
st.markdown("**Sentence Selector for Geographic Composition**")
|
220 |
+
|
221 |
+
# 提取句子
|
222 |
+
sentences = list(doc_copy.sents)
|
223 |
+
|
224 |
+
# 构建表格数据
|
225 |
+
rows = []
|
226 |
+
for idx, sent in enumerate(sentences):
|
227 |
+
sentence_text = sent.text.strip()
|
228 |
+
# 生成跳转链接(定位到Tagger)
|
229 |
+
url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text)
|
230 |
+
new_row = {
|
231 |
+
'Sr.': idx + 1,
|
232 |
+
'sentence': sentence_text,
|
233 |
+
'Select': f'<a target="_self" href="{url}">Select this sentence</a>'
|
234 |
+
}
|
235 |
+
rows.append(new_row)
|
236 |
+
|
237 |
+
# 转为 DataFrame 并渲染为 HTML
|
238 |
+
df = pd.DataFrame(rows)
|
239 |
+
st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
def show_spatial_ent_table(doc, text):
|
244 |
+
global types
|
245 |
+
if len(doc.ents) > 0:
|
246 |
+
st.markdown("**______________________________________________________________________________________**")
|
247 |
+
st.markdown("**Spatial Entities List**")
|
248 |
+
|
249 |
+
# 初始化一个空 DataFrame
|
250 |
+
df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson'])
|
251 |
+
rows = [] # 用于存储所有行
|
252 |
+
|
253 |
+
for ent in doc.ents:
|
254 |
+
url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
255 |
+
print(url_map, 'uuurrr')
|
256 |
+
print(ent._.rse_id, 'pppp')
|
257 |
+
url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
258 |
+
|
259 |
+
# 创建新行
|
260 |
+
new_row = {
|
261 |
+
'Sr.': len(rows) + 1,
|
262 |
+
'entity': ent.text,
|
263 |
+
'label': ent.label_,
|
264 |
+
'Map': f'<a target="_self" href="{url_map}">View</a>',
|
265 |
+
'GEOJson': f'<a target="_self" href="{url_json}">View</a>'
|
266 |
+
}
|
267 |
+
|
268 |
+
rows.append(new_row) # 将新行添加到列表中
|
269 |
+
|
270 |
+
# 将所有行转为 DataFrame
|
271 |
+
df = pd.DataFrame(rows)
|
272 |
+
|
273 |
+
# 使用 Streamlit 显示 HTML 表格
|
274 |
+
st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
275 |
+
|
276 |
+
# params = st.experimental_get_query_params()
|
277 |
+
# params = st.query_params
|
278 |
+
# ase, level_1, level_2, level_3 = geoutil.get_ent(params["entity"][0])
|
279 |
+
# print(geoutil.get_ent(params), 'ppppp')
|
280 |
+
|
281 |
+
def set_header(): # tetis Geospacy LOGO
|
282 |
+
LOGO_IMAGE = "title.jpg"
|
283 |
+
|
284 |
+
st.markdown(
|
285 |
+
"""
|
286 |
+
<style>
|
287 |
+
.container {
|
288 |
+
display: flex;
|
289 |
+
}
|
290 |
+
.logo-text {
|
291 |
+
font-weight:700 !important;
|
292 |
+
font-size:50px !important;
|
293 |
+
color: #52aee3 !important;
|
294 |
+
padding-left: 10px !important;
|
295 |
+
}
|
296 |
+
.logo-img {
|
297 |
+
float:right;
|
298 |
+
width: 10%;
|
299 |
+
height: 10%;
|
300 |
+
}
|
301 |
+
</style>
|
302 |
+
""",
|
303 |
+
unsafe_allow_html=True
|
304 |
+
)
|
305 |
+
st.markdown(
|
306 |
+
f"""
|
307 |
+
<div class="container">
|
308 |
+
<img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
|
309 |
+
<p class="logo-text">SpatialParse</p>
|
310 |
+
</div>
|
311 |
+
""",
|
312 |
+
unsafe_allow_html=True
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
+
def set_side_menu():
|
317 |
+
global gpe_selected, loc_selected, rse_selected, model, types
|
318 |
+
types = ""
|
319 |
+
params = st.experimental_get_query_params()
|
320 |
+
st.sidebar.markdown("## Deployment Method")
|
321 |
+
st.sidebar.markdown("You can select the deployment method for the model.")
|
322 |
+
deployment_options = ["API", "Local deployment"]
|
323 |
+
use_local_model = st.sidebar.radio("Choose deployment method:", deployment_options, index=0) == "Local deployment"
|
324 |
+
|
325 |
+
if use_local_model:
|
326 |
+
local_model_path = st.sidebar.text_input("Enter local model path:", "")
|
327 |
+
|
328 |
+
st.sidebar.markdown("## LLM Model")
|
329 |
+
st.sidebar.markdown("You can **select** different *LLM model* powered by API.")
|
330 |
+
models = ['Llama-3-8B', 'Mistral-7B-0.3', 'Gemma-2-10B', 'GPT-4o', 'Gemini Pro', 'Deepseek-R1', 'en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf']
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
if "model" in params:
|
336 |
+
default_ix = models.index(params["model"][0])
|
337 |
+
else:
|
338 |
+
default_ix = models.index('GPT-4o')
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
model = st.sidebar.selectbox('LLM Model', models, index=default_ix)
|
344 |
+
|
345 |
+
st.sidebar.markdown("## Spatial Entity Labels")
|
346 |
+
|
347 |
+
st.sidebar.markdown("Please **Mark** the Spatial Entities you want to extract.")
|
348 |
+
tpes = ""
|
349 |
+
if "type" in params:
|
350 |
+
tpes = params['type'][0]
|
351 |
+
|
352 |
+
st.sidebar.markdown("### Absolute Spatial Entity:")
|
353 |
+
if "g" in tpes:
|
354 |
+
gpe = st.sidebar.checkbox('GPE', value=True)
|
355 |
+
else:
|
356 |
+
gpe = st.sidebar.checkbox('GPE')
|
357 |
+
|
358 |
+
if "l" in tpes:
|
359 |
+
loc = st.sidebar.checkbox('LOC', value=True)
|
360 |
+
else:
|
361 |
+
loc = st.sidebar.checkbox('LOC')
|
362 |
+
|
363 |
+
st.sidebar.markdown("### Relative Spatial Entity:")
|
364 |
+
|
365 |
+
if "r" in tpes:
|
366 |
+
rse = st.sidebar.checkbox('RSE', value=True)
|
367 |
+
else:
|
368 |
+
rse = st.sidebar.checkbox('RSE')
|
369 |
+
if (gpe):
|
370 |
+
gpe_selected = "GPE"
|
371 |
+
types += "g"
|
372 |
+
|
373 |
+
if (loc):
|
374 |
+
loc_selected = "LOC"
|
375 |
+
types += "l"
|
376 |
+
|
377 |
+
if (rse):
|
378 |
+
rse_selected = "RSE"
|
379 |
+
types += "r"
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
def main():
|
386 |
+
global gpe_selected, loc_selected, rse_selected, model
|
387 |
+
#print(displacy.templates.TPL_ENT)
|
388 |
+
set_header()
|
389 |
+
set_side_menu()
|
390 |
+
|
391 |
+
|
392 |
+
text = set_input()
|
393 |
+
|
394 |
+
if(text is not None):
|
395 |
+
extract_spatial_entities(text)
|
396 |
+
elif "text" in st.session_state:
|
397 |
+
text = st.session_state.text
|
398 |
+
extract_spatial_entities(text)
|
399 |
+
|
400 |
+
|
401 |
+
if __name__ == '__main__':
|
402 |
+
main()
|
403 |
+
|
404 |
+
|