Spaces:
Running
Running
File size: 7,950 Bytes
db11cc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from spacy.tokens import Span
from spacy.tokens import Doc
from spacy.tokens import Token
import regex_spatial
from spacy.language import Language
import re
from utils import llm_ent_extract
id =""
rse_id = "rse_id"
def set_extension():
Span.set_extension(rse_id, default = "",force = True)
Doc.set_extension(rse_id, default = "",force = True)
Token.set_extension(rse_id, default = "",force = True)
def get_level1(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex())
def get_level2(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex())
def get_level3(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex())
def find_ent_by_regex(doc, sentence, ent, regex):
global id
if id == "":
id = ent.text
for match in re.finditer(regex, doc.text):
start, end = match.span()
if(start>= sentence.start_char and start<= sentence.end_char):
span = doc.char_span(start, end)
if span is not None:
id = span.text +"_"+ id
if(start > ent.end_char):
ent.end_char = end
else:
ent.start_char = start
return ent
return ent
def update_entities(doc, entity_texts, replace=True):
"""
根据给定的文本内容标注实体,并直接修改 doc.ents。
:param doc: spaCy 解析后的 Doc 对象
:param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别
:param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的
"""
new_ents = list(doc.ents) if not replace else [] # 如果 replace=False,保留已有实体
for ent_text, ent_label in entity_texts.items():
start = doc.text.find(ent_text) # 在全文中查找文本位置
if start != -1:
start_token = len(doc.text[:start].split()) # 计算起始 token 索引
end_token = start_token + len(ent_text.split()) # 计算结束 token 索引
if start_token < len(doc) and end_token <= len(doc): # 确保索引不越界
new_ent = Span(doc, start_token, end_token, label=ent_label)
new_ents.append(new_ent)
doc.set_ents(new_ents) # 更新 doc.ents
def get_relative_entity(doc, sentence, ent):
global id
id = ""
rel_entity = get_level1(doc, sentence, ent)
# print(1111 ,rel_entity)
rel_entity = get_level2(doc, sentence, rel_entity)
# print(2222 ,rel_entity)
rel_entity = get_level3(doc, sentence, rel_entity)
# print(3333 ,rel_entity)
if("_" in id):
rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE")
rel_entity._.rse_id = id
# print(id, 'idid')
# print(rel_entity._.rse_id, '._._')
return rel_entity
rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_)
rel_entity._.rse_id = id
# print(4444 ,rel_entity)
return rel_entity
@Language.component("spatial_pipeline")
def get_spatial_ent(doc):
set_extension()
new_ents = []
# ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"] # 筛选出ase
# LLM 输出
# GPE = '[###Pyrmont###, ###Glebe###]' # LLM 输出的实体
GPE = llm_ent_extract.extract_GPE(doc.text) # LLM 输出的实体
print(doc.text, 'llmin')
print(GPE, 'llout')
GPE = llm_ent_extract.extract(GPE, 'GPE')
print(GPE, 'llmout2')
update_entities(doc, GPE, True)
ents = doc.ents
print(ents, 'eee')
# print(doc, 'ddd')
# print(ents, 'ddd')
# GPE = llm_ent_extract.extract(llm_ent_extract.extract_GPE(doc.text), 'gpe')
# update_entities(doc, GPE)
# LLM 输出完毕
# print(doc.ents, 111)
# print(doc.ents[2], 222)
# print(type(doc.ents[2]), 222)
# print(doc.ents[2].label_, 333)
# print('----------')
# doc.ents[2] = 'pp'
# print(doc.ents[2], 111)
# print(doc.ents[2].label_, 222)
# print(type(doc.ents), 333)
end = None
for ent in ents:
if ent.end != len(doc):
next_token = doc[ent.end]
if end is not None:
start = end
else:
start = ent.sent.start
if next_token.text.lower() in regex_spatial.get_keywords():
end = next_token.i
else:
end = ent.end
else:
start = ent.sent.start
end = ent.end
# print(doc, '//',start, '//', end, 999888)
# print(doc[start],'//', doc[end])
# print(ents, 999)
rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent)
# print(doc.ents[0]._.rse_id, '._._2')
# print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id)
new_ents.append(rsi_ent)
doc.ents = new_ents
return doc
# def update_doc_ents(doc, new_dict):
# """
# 更新 doc.ents, 将新的实体文本和标签添加到 doc 中。
#
# 参数:
# - doc: spaCy 的 Doc 对象
# - new_dict: 一个字典,键是实体文本,值是标签
# """
# modified_ents = []
#
# # 遍历字典中的实体文本和标签
# for ent_text, label in new_dict.items():
# # 将实体文本拆分成单词
# ent_words = ent_text.split()
#
# # 遍历 doc 中的 token 来查找第一个单词
# start = None
# for i in range(len(doc)):
# # 如果当前 token 和实体的第一个单词匹配,确定 start
# if doc[i].text == ent_words[0]:
# start = i
# # 然后检查后续的单词是否都匹配
# end = start + len(ent_words) # 计算 end 为 start + 单词数
# if all(doc[start + j].text == ent_words[j] for j in range(len(ent_words))):
# # 创建 Span 对象
# new_ent = Span(doc, start, end, label=label)
# modified_ents.append(new_ent)
# break # 找到匹配后跳出循环
#
# # 使用 doc.set_ents() 更新 doc.ents
# doc.set_ents(modified_ents)
#
#
# # def llm_extract(doc, model):
#
# def split_doc_into_sentences(doc):
# """
# 将 doc 的文本按句子分割,并返回每个句子的字符串列表。
# """
# sentence_list = [sent.text.strip() for sent in doc.sents]
# return sentence_list
#
#
# @Language.component("spatial_pipeline")
# def get_spatial_ent(doc):
#
# set_extension()
#
# split_sent = split_doc_into_sentences(doc)
# for i in range(len(split_sent)):
# gpe_dict = llm_ent_extract.extract_GPE(split_sent[i])
# loc_dict = llm_ent_extract.extract_LOC(split_sent[i])
# new_dict = gpe_dict|loc_dict
#
#
# print(gpe_dict, '111')
# print(loc_dict)
# print(new_dict)
# # new_dict = {'pp': 'ORG', 'France': 'GPE', 'Paris': 'GPE'}
#
#
# # 调用新的函数更新 doc 的实体
# update_doc_ents(doc, new_dict)
#
# # 继续处理 doc.ents
# ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"]
# print(ents[1].label_)
#
# end = None
# new_ents = []
#
# for ent in ents:
# if ent.end != len(doc):
# next_token = doc[ent.end + 1]
# if end is not None:
# start = end
# else:
# start = ent.sent.start
# if next_token.text.lower() in regex_spatial.get_keywords():
# end = next_token.i
# else:
# end = ent.end
# else:
# start = ent.sent.start
# end = ent.end
#
# # 调用 get_relative_entity 来获得新的实体信息
# rsi_ent = get_relative_entity(doc, Span(doc, start, end), ent)
#
# # 将处理后的实体添加到新的实体列表中
# new_ents.append(rsi_ent)
#
# doc.ents = new_ents # 更新 doc.ents
# print(new_ents, '111222')
#
# return doc |