Shunfeng Zheng commited on
Commit
3206bb3
·
verified ·
1 Parent(s): a6cd249

Delete 提取测试.py

Browse files
Files changed (1) hide show
  1. 提取测试.py +0 -268
提取测试.py DELETED
@@ -1,268 +0,0 @@
1
- import math
2
- import streamlit as st
3
- from utils import geoutil
4
- import pickle
5
-
6
-
7
- def update_entities(doc, entity_texts, replace=True):
8
- """
9
- 根据给定的文本内容标注实体,并直接修改 doc.ents。
10
-
11
- :param doc: spaCy 解析后的 Doc 对象
12
- :param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别
13
- :param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的
14
- """
15
- new_ents = list(doc.ents) if not replace else [] # 如果 replace=False,保留已有实体
16
-
17
- for ent_text, ent_label in entity_texts.items():
18
- start = doc.text.find(ent_text) # 在全文中查找文本位置
19
- if start != -1:
20
- start_token = len(doc.text[:start].split()) # 计算起始 token 索引
21
- end_token = start_token + len(ent_text.split()) # 计算结束 token 索引
22
-
23
- if start_token < len(doc) and end_token <= len(doc): # 确保索引不越界
24
- new_ent = Span(doc, start_token, end_token, label=ent_label)
25
- new_ents.append(new_ent)
26
-
27
- doc.set_ents(new_ents) # 更新 doc.ents
28
-
29
-
30
- # def midpoint(x1, y1, x2, y2, angle):
31
- def midpoint(y1, x1, y2, x2, angle):
32
-
33
- lonA = math.radians(y1)
34
- lonB = math.radians(y2)
35
- latA = math.radians(x1)
36
- latB = math.radians(x2)
37
-
38
- dLon = lonB - lonA
39
-
40
- Bx = math.cos(latB) * math.cos(dLon)
41
- By = math.cos(latB) * math.sin(dLon)
42
-
43
- latC = math.atan2(math.sin(latA) + math.sin(latB),
44
- math.sqrt((math.cos(latA) + Bx) * (math.cos(latA) + Bx) + By * By))
45
- lonC = lonA + math.atan2(By, math.cos(latA) + Bx)
46
- lonC = (lonC + 3 * math.pi) % (2 * math.pi) - math.pi
47
- latitude = round(math.degrees(latC), 8)
48
- longitude = round(math.degrees(lonC) ,8)
49
-
50
- return [longitude, latitude, angle
51
-
52
- ]
53
-
54
-
55
- def get_midmid_point(centroid, point1, point2, is_midmid):
56
- mid1 = midpoint(centroid[0], centroid[1],
57
- point1[0], point1[1]
58
- , point1[2])
59
- mid2 = midpoint(centroid[0], centroid[1],
60
- point2[0], point2[1],
61
- point2[2])
62
- midmid1 = midpoint(centroid[0], centroid[1],
63
- mid1[0], mid1[1]
64
- , mid1[2])
65
- midmid2 = midpoint(centroid[0], centroid[1],
66
- mid2[0], mid2[1],
67
- mid2[2])
68
- if is_midmid:
69
- return midmid1, midmid2
70
- else:
71
- return mid1, mid2
72
-
73
-
74
-
75
-
76
- import spacy
77
- from spacy.language import Language
78
- import regex_spatial
79
- from spacy.tokens import Span, Doc, Token
80
- import re
81
- import llm_ent_extract
82
-
83
-
84
- rse_id = "rse_id"
85
- def set_extension():
86
- Span.set_extension(rse_id, default="", force=True)
87
- Doc.set_extension(rse_id, default="", force=True)
88
- Token.set_extension(rse_id, default="", force=True)
89
- def find_ent_by_regex(doc, sentence, ent, regex):
90
- global id
91
-
92
- if id == "":
93
- id = ent.text
94
- for match in re.finditer(regex, doc.text):
95
- start, end = match.span()
96
- if(start>= sentence.start_char and start<= sentence.end_char):
97
- span = doc.char_span(start, end)
98
- if span is not None:
99
- id = span.text +"_"+ id
100
- if(start > ent.end_char):
101
- ent.end_char = end
102
- else:
103
- ent.start_char = start
104
-
105
- return ent
106
-
107
- return ent
108
- def get_level1(doc, sentence, ent):
109
- return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex())
110
-
111
- def get_level2(doc, sentence, ent):
112
- return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex())
113
-
114
- def get_level3(doc, sentence, ent):
115
- return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex())
116
-
117
- def get_relative_entity(doc, sentence, ent):
118
- global id
119
- id = ""
120
- rel_entity = get_level1(doc, sentence, ent)
121
-
122
- rel_entity = get_level2(doc, sentence, rel_entity)
123
-
124
- rel_entity = get_level3(doc, sentence, rel_entity)
125
-
126
- # print(id)
127
- if ("_" in id):
128
-
129
- rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE")
130
- rel_entity._.rse_id = id
131
-
132
- return rel_entity
133
-
134
- rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_)
135
- rel_entity._.rse_id = id
136
- return rel_entity
137
-
138
-
139
- @Language.component("spatial_pipeline")
140
- def get_spatial_ent(doc):
141
- set_extension()
142
- new_ents = []
143
-
144
- ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"]
145
-
146
- # GPE = '[###5###]' # LLM 输出的实体
147
- # GPE = llm_ent_extract.extract(GPE, 'LOC')
148
- #
149
- # update_entities(doc, GPE, True)
150
- # ents = doc.ents
151
-
152
-
153
- # GPE = llm_ent_extract.extract(llm_ent_extract.extract_GPE(doc.text), 'gpe')
154
- # update_entities(doc, GPE)
155
-
156
- end = None
157
- for ent in ents:
158
- if ent.end != len(doc):
159
- next_token = doc[ent.end] # 怀疑多加了一个索引。Between Burwood and Pyrmont city. 分别是Pyrmont 和 .
160
- if end is not None: # end 在4次循环中是0,2,5,8
161
- start = end
162
- else:
163
- start = ent.sent.start # 似乎永远都是0
164
- if next_token.text.lower() in regex_spatial.get_keywords():
165
- end = next_token.i
166
- else:
167
- end = ent.end
168
- rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent)
169
- # print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id, '```')
170
- new_ents.append(rsi_ent)
171
-
172
- doc.ents = new_ents
173
-
174
-
175
- return doc
176
- gpe_selected = "GPE"
177
- loc_selected = "LOC"
178
- rse_selected = "RSE"
179
-
180
- def set_selected_entities(doc):
181
- global gpe_selected, loc_selected, rse_selected
182
- ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
183
-
184
- doc.ents = ents
185
-
186
- return doc
187
-
188
- # text = 'Sydney is 6 kilometres to the east.'
189
- def extract_spatial_entities(text):
190
-
191
-
192
- nlp = spacy.load("en_core_web_md") #####
193
- # nlp.add_pipe("spatial_pipeline", after="ner")
194
- doc = nlp(text)
195
-
196
- nlp.add_pipe("spatial_pipeline", after="ner")
197
-
198
- # 分句处理
199
- sent_ents = []
200
- sent_texts = []
201
- offset = 0 # 记录当前 token 偏移量
202
-
203
- for sent in doc.sents:
204
-
205
- sent_doc = nlp(sent.text) # 逐句处理
206
-
207
- sent_doc = set_selected_entities(sent_doc) # 这里处理实体
208
-
209
- sent_texts.append(sent_doc.text)
210
-
211
-
212
-
213
- # **调整每个实体的索引,使其匹配完整文本**
214
- for ent in sent_doc.ents:
215
- new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
216
- sent_ents.append(new_ent)
217
-
218
- offset += len(sent) # 更新偏移量
219
-
220
- # **创建新 Doc**
221
- final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
222
-
223
- # **设置实体**
224
- final_doc.set_ents(sent_ents)
225
- # 分句处理完毕
226
-
227
-
228
-
229
-
230
-
231
- print('-' * 50)
232
- # print(doc.text)
233
- # print(doc.ents)
234
- # print("修改后实体:", [(ent.text, ent.label_) for ent in doc.ents])
235
- print("修改后实体:", [(ent.text, ent.label_) for ent in final_doc.ents])
236
-
237
- # print(doc.ents[0]._.rse_id, 'final_entO')
238
- # print(final_doc.ents[0]._.rse_id, 'final_entO')
239
- final_doc.ents[0]._.rse_id = '11'
240
- print(final_doc.ents[0]._.rse_id, 'final_entO')
241
- print(final_doc.ents[0].sent, 'final_entO')
242
- # # print(doc.sents)
243
-
244
- final_doc.to_disk("saved_doc.spacy")
245
- print("Doc saved successfully!")
246
-
247
-
248
- text = 'Between Burwood and Pyrmont. Between Burwood and Pyrmont city.'
249
- text = 'Between Burwood and Pyrmont.'
250
- text = "New York is north of Washington. Between Burwood and Pyrmont city."
251
- text = "5 km east of Burwood."
252
-
253
- extract_spatial_entities(text)
254
-
255
- nlp = spacy.load("en_core_web_md")
256
- doc = Doc(nlp.vocab).from_disk("saved_doc.spacy")
257
-
258
- print("修改后实体:", [(ent.text, ent.label_) for ent in doc.ents])
259
- print(doc.ents[0]._.rse_id, 'final_entO')
260
- # print(doc.ents[0].sent, 'final_entO')
261
-
262
-
263
-
264
-
265
-
266
-
267
-
268
-