File size: 6,417 Bytes
68a9b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import json
import os

import streamlit as st
import streamlit.components.v1 as components
from chain import get_chain
from chat_history import insert_chat_history, insert_chat_history_articles
from connection import connect
from css import load_css
from langchain.callbacks import get_openai_callback
from message import Message

st.set_page_config(layout="wide")

st.title("Sorbobot - Le futur de la recherche scientifique interactive")

chat_column, doc_column = st.columns([2, 1])

conn = connect()


def initialize_session_state():
    if "history" not in st.session_state:
        st.session_state.history = []
    if "token_count" not in st.session_state:
        st.session_state.token_count = 0
    if "conversation" not in st.session_state:
        st.session_state.conversation = get_chain(conn)


def send_message_callback():
    with st.spinner("Wait for it..."):
        with get_openai_callback() as cb:
            human_prompt = st.session_state.human_prompt.strip()
            if len(human_prompt) == 0:
                return
            llm_response = st.session_state.conversation(human_prompt)
            st.session_state.history.append(Message("human", human_prompt))
            st.session_state.history.append(
                Message(
                    "ai",
                    llm_response["answer"],
                    documents=llm_response["source_documents"],
                )
            )
            st.session_state.token_count += cb.total_tokens
            if os.environ.get("ENVIRONMENT") == "dev":
                history_id = insert_chat_history(
                    conn, human_prompt, llm_response["answer"]
                )
                insert_chat_history_articles(
                    conn, history_id, llm_response["source_documents"]
                )


def exemple_message_callback_button(args):
    st.session_state.human_prompt = args
    send_message_callback()
    st.session_state.human_prompt = ""


def clear_history():
    st.session_state.history.clear()
    st.session_state.token_count = 0
    st.session_state.conversation.memory.clear()


load_css()
initialize_session_state()

exemples = [
    "Who has published influential research on quantum computing?",
    "List any prominent authors in the field of artificial intelligence ethics?",
    "Who are the leading experts on climate change mitigation strategies?",
]

with chat_column:
    chat_placeholder = st.container()
    prompt_placeholder = st.form("chat-form", clear_on_submit=True)
    information_placeholder = st.container()

    with chat_placeholder:
        div = f"""
            <div class="chat-row">
                <img class="chat-icon" src="https://cdn-icons-png.flaticon.com/512/1129/1129398.png" width=32 height=32>
                <div class="chat-bubble ai-bubble">
                    Welcome to SorboBot, a Hugging Face Space designed to revolutionize the way you find published articles. <br/>
                    Powered by a full export from ScanR and Hal at Sorbonne University, SorboBot utilizes advanced language model technology
                    to provide you with a list of published articles based on your prompt.
                </div>
            </div>
        """
        st.markdown(div, unsafe_allow_html=True)

        for chat in st.session_state.history:
            div = f"""
                <div class="chat-row
                    {'' if chat.origin == 'ai' else 'row-reverse'}">
                    <img class="chat-icon" src="https://cdn-icons-png.flaticon.com/512/{
                        '1129/1129398.png' if chat.origin == 'ai'
                                    else '1077/1077012.png'}"
                        width=32 height=32>
                    <div class="chat-bubble
                    {'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
                        &#8203;{chat.message}
                    </div>
                </div>
            """
            st.markdown(div, unsafe_allow_html=True)

        for _ in range(3):
            st.markdown("")

    with prompt_placeholder:
        st.markdown("**Chat**")
        cols = st.columns((6, 1))
        cols[0].text_input(
            "Chat",
            label_visibility="collapsed",
            key="human_prompt",
        )
        cols[1].form_submit_button(
            "Submit",
            type="primary",
            on_click=send_message_callback,
        )

    if st.session_state.token_count == 0:
        information_placeholder.markdown("### Test me !")
        for idx_exemple, exemple in enumerate(exemples):
            information_placeholder.button(
                exemple,
                key=f"{idx_exemple}_button",
                on_click=exemple_message_callback_button,
                args=(exemple,),
            )

    st.button(
        ":new: Start a new conversation", on_click=clear_history, type="secondary"
    )

    if os.environ.get("ENVIRONMENT") == "dev":
        information_placeholder.caption(
            f"""
        Used {st.session_state.token_count} tokens \n
        Debug Langchain conversation:
        {st.session_state.history}
        """
        )

    components.html(
        """
    <script>
    const streamlitDoc = window.parent.document;

    const buttons = Array.from(
        streamlitDoc.querySelectorAll('.stButton > button')
    );
    const submitButton = buttons.find(
        el => el.innerText === 'Submit'
    );

    streamlitDoc.addEventListener('keydown', function(e) {
        switch (e.key) {
            case 'Enter':
                submitButton.click();
                break;
        }
    });
    </script>
    """,
        height=0,
        width=0,
    )

with doc_column:
    st.markdown("**Source documents**")
    if len(st.session_state.history) > 0:
        for doc in st.session_state.history[-1].documents:
            doc_content = json.loads(doc.page_content)
            doc_metadata = doc.metadata

            expander = st.expander(doc_content["title"])
            expander.markdown(
                f"**HalID** : https://hal.science/{doc_metadata['hal_id']}"
            )
            expander.markdown(doc_metadata["abstract"])
            expander.markdown(f"**Authors** : {doc_content['authors']}")
            expander.markdown(f"**Keywords** : {doc_content['keywords']}")
            expander.markdown(f"**Distance** : {doc_metadata['distance']}")