Spaces:
Sleeping
Sleeping
File size: 6,417 Bytes
68a9b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import json
import os
import streamlit as st
import streamlit.components.v1 as components
from chain import get_chain
from chat_history import insert_chat_history, insert_chat_history_articles
from connection import connect
from css import load_css
from langchain.callbacks import get_openai_callback
from message import Message
st.set_page_config(layout="wide")
st.title("Sorbobot - Le futur de la recherche scientifique interactive")
chat_column, doc_column = st.columns([2, 1])
conn = connect()
def initialize_session_state():
if "history" not in st.session_state:
st.session_state.history = []
if "token_count" not in st.session_state:
st.session_state.token_count = 0
if "conversation" not in st.session_state:
st.session_state.conversation = get_chain(conn)
def send_message_callback():
with st.spinner("Wait for it..."):
with get_openai_callback() as cb:
human_prompt = st.session_state.human_prompt.strip()
if len(human_prompt) == 0:
return
llm_response = st.session_state.conversation(human_prompt)
st.session_state.history.append(Message("human", human_prompt))
st.session_state.history.append(
Message(
"ai",
llm_response["answer"],
documents=llm_response["source_documents"],
)
)
st.session_state.token_count += cb.total_tokens
if os.environ.get("ENVIRONMENT") == "dev":
history_id = insert_chat_history(
conn, human_prompt, llm_response["answer"]
)
insert_chat_history_articles(
conn, history_id, llm_response["source_documents"]
)
def exemple_message_callback_button(args):
st.session_state.human_prompt = args
send_message_callback()
st.session_state.human_prompt = ""
def clear_history():
st.session_state.history.clear()
st.session_state.token_count = 0
st.session_state.conversation.memory.clear()
load_css()
initialize_session_state()
exemples = [
"Who has published influential research on quantum computing?",
"List any prominent authors in the field of artificial intelligence ethics?",
"Who are the leading experts on climate change mitigation strategies?",
]
with chat_column:
chat_placeholder = st.container()
prompt_placeholder = st.form("chat-form", clear_on_submit=True)
information_placeholder = st.container()
with chat_placeholder:
div = f"""
<div class="chat-row">
<img class="chat-icon" src="https://cdn-icons-png.flaticon.com/512/1129/1129398.png" width=32 height=32>
<div class="chat-bubble ai-bubble">
Welcome to SorboBot, a Hugging Face Space designed to revolutionize the way you find published articles. <br/>
Powered by a full export from ScanR and Hal at Sorbonne University, SorboBot utilizes advanced language model technology
to provide you with a list of published articles based on your prompt.
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
for chat in st.session_state.history:
div = f"""
<div class="chat-row
{'' if chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="https://cdn-icons-png.flaticon.com/512/{
'1129/1129398.png' if chat.origin == 'ai'
else '1077/1077012.png'}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
​{chat.message}
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
for _ in range(3):
st.markdown("")
with prompt_placeholder:
st.markdown("**Chat**")
cols = st.columns((6, 1))
cols[0].text_input(
"Chat",
label_visibility="collapsed",
key="human_prompt",
)
cols[1].form_submit_button(
"Submit",
type="primary",
on_click=send_message_callback,
)
if st.session_state.token_count == 0:
information_placeholder.markdown("### Test me !")
for idx_exemple, exemple in enumerate(exemples):
information_placeholder.button(
exemple,
key=f"{idx_exemple}_button",
on_click=exemple_message_callback_button,
args=(exemple,),
)
st.button(
":new: Start a new conversation", on_click=clear_history, type="secondary"
)
if os.environ.get("ENVIRONMENT") == "dev":
information_placeholder.caption(
f"""
Used {st.session_state.token_count} tokens \n
Debug Langchain conversation:
{st.session_state.history}
"""
)
components.html(
"""
<script>
const streamlitDoc = window.parent.document;
const buttons = Array.from(
streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
el => el.innerText === 'Submit'
);
streamlitDoc.addEventListener('keydown', function(e) {
switch (e.key) {
case 'Enter':
submitButton.click();
break;
}
});
</script>
""",
height=0,
width=0,
)
with doc_column:
st.markdown("**Source documents**")
if len(st.session_state.history) > 0:
for doc in st.session_state.history[-1].documents:
doc_content = json.loads(doc.page_content)
doc_metadata = doc.metadata
expander = st.expander(doc_content["title"])
expander.markdown(
f"**HalID** : https://hal.science/{doc_metadata['hal_id']}"
)
expander.markdown(doc_metadata["abstract"])
expander.markdown(f"**Authors** : {doc_content['authors']}")
expander.markdown(f"**Keywords** : {doc_content['keywords']}")
expander.markdown(f"**Distance** : {doc_metadata['distance']}")
|