File size: 1,642 Bytes
e0c4503
 
 
efa719b
 
 
 
 
 
 
 
e0c4503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from huggingface_hub import login

# Get the token securely from Hugging Face secrets
hf_token = os.getenv("HF_TOKEN")

# Authenticate with the token
login(token=hf_token)

# Define model path on Hugging Face Hub
model_name = "Somya1834/fc-deepseek-finetuned-50"  # Replace with your repo

# Load tokenizer and model from Hugging Face
@st.cache_resource
def load_model():
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    return tokenizer, model, device

# Load model once when app starts
tokenizer, model, device = load_model()

# Streamlit UI
st.title("🚀 AI Chatbot - Powered by Your Fine-Tuned Model!")
st.markdown("Ask me anything and get an AI-generated response!")

# User input
prompt = st.text_area("Enter your query:", "")

# Generate response when button is clicked
if st.button("Generate Response"):
    if prompt.strip() != "":
        # Tokenize input
        inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True, padding=True).to(device)

        # Generate response
        with torch.no_grad():
            outputs = model.generate(**inputs, max_length=512, num_return_sequences=1)

        # Decode and display the generated response
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        st.success(f"💬 Response: {response}")
    else:
        st.warning("Please enter a query to generate a response.")