import logging from pathlib import Path import json # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def generate_visualization(file_path: str, request: str) -> dict: """ Generate visualization code for Excel data using Hugging Face models. Args: file_path (str): Path to the Excel file request (str): Natural language visualization request Returns: dict: Generated code and visualization description """ logger.info(f"Generating visualization for {file_path}: {request}") # Mock implementation - would use actual Hugging Face models in production # Would actually read Excel data and generate real matplotlib/seaborn code # Example mock visualization code mock_code = """ import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # Read the Excel file df = pd.read_excel('data.xlsx') # Create the visualization plt.figure(figsize=(10, 6)) sns.barplot(data=df, x='Category', y='Values') plt.title('Data Visualization') plt.xlabel('Categories') plt.ylabel('Values') plt.xticks(rotation=45) plt.tight_layout() plt.show() """ return { "code": mock_code, "description": "This code generates a bar plot showing the relationship between categories and their corresponding values from your Excel data.", "note": "This is a mock response. In production, the code would be generated based on actual Excel data analysis and user requirements." }