File size: 895 Bytes
3346c04 690dba6 439201f 690dba6 3346c04 690dba6 7e1ec2c 690dba6 cccfb99 24de6f4 439201f 4da2dd4 439201f 4da2dd4 3346c04 a6447c8 6244402 37d6312 21a7d19 ee01b34 3346c04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from huggingface_hub import hf_hub_download
model = joblib.load(
hf_hub_download("Skreeauk/dark-gbf-xgboost2", "model.joblib")
)
def predict(*features) -> str:
columns = ['pns','seraph','opus','draconic','null_foe','off_ele']
data = pd.DataFrame([features], columns=columns)
result = model.predict(data).tolist()[0]
return result
demo = gr.Interface(
fn=predict,
inputs=[gr.Slider(minimum=0, maximum=2, step=1, label="PnS"),
gr.Checkbox(label='Seraph', info="True or False"),
gr.Checkbox(label='Opus', info="True or False"),
gr.Checkbox(label='Draconic', info="True or False"),
gr.Checkbox(label='Null Ele Foe', info="True or False"),
gr.Checkbox(label='Off Ele Foe', info="True or False")],
outputs="text"
)
demo.launch() |