File size: 895 Bytes
3346c04
690dba6
 
439201f
690dba6
3346c04
690dba6
7e1ec2c
690dba6
 
cccfb99
24de6f4
439201f
 
4da2dd4
439201f
4da2dd4
3346c04
 
a6447c8
6244402
37d6312
 
 
 
21a7d19
ee01b34
3346c04
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from huggingface_hub import hf_hub_download

model = joblib.load(
	hf_hub_download("Skreeauk/dark-gbf-xgboost2", "model.joblib")
)

def predict(*features) -> str:
    
    columns = ['pns','seraph','opus','draconic','null_foe','off_ele']
    data = pd.DataFrame([features], columns=columns)
    result = model.predict(data).tolist()[0]
    
    return result

demo = gr.Interface(
    fn=predict,
    inputs=[gr.Slider(minimum=0, maximum=2, step=1, label="PnS"), 
            gr.Checkbox(label='Seraph', info="True or False"),
           gr.Checkbox(label='Opus', info="True or False"),
           gr.Checkbox(label='Draconic', info="True or False"),
           gr.Checkbox(label='Null Ele Foe', info="True or False"),
           gr.Checkbox(label='Off Ele Foe', info="True or False")],
    outputs="text"
)

demo.launch()