File size: 11,083 Bytes
2ec353b 56f0aa0 d323fcc 56f0aa0 d323fcc 56f0aa0 d323fcc d66da66 d323fcc 56f0aa0 d323fcc 56f0aa0 0b9f901 56f0aa0 2ec353b 56f0aa0 2ec353b 56f0aa0 d323fcc 56f0aa0 d323fcc 56f0aa0 d323fcc 56f0aa0 06f0c97 56f0aa0 d323fcc 56f0aa0 01ebb9f 56f0aa0 d323fcc 56f0aa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
from sklearn.preprocessing import normalize
from datasets import Dataset
from sklearn.metrics.pairwise import cosine_similarity
from scipy.linalg import sqrtm
from scipy.spatial.distance import pdist
from PIL import Image
import numpy as np
import os
from diffusers import DiffusionPipeline
from datasets import load_dataset
from transformers import AutoProcessor, AutoModel
import torch
import json
import time
from tqdm import tqdm
import subprocess
import platform
import sys
import requests
jsons__ = requests.get(
"https://huggingface.co./datasets/SimulaMet/Kvasir-VQA-test/resolve/main/imagen-test").json()
test_prompts = [c for qa in jsons__.values()
for pair in qa.values() for c in pair]
gpu_name = torch.cuda.get_device_name(
0) if torch.cuda.is_available() else "cpu"
device = "cuda" if torch.cuda.is_available() else "cpu"
def get_mem(): return torch.cuda.memory_allocated(device) / \
(1024 ** 2) if torch.cuda.is_available() else 0
initial_mem = get_mem()
# βοΈβοΈ--------EDIT SECTION 1: SUBMISISON DETAILS and MODEL LOADING --------βοΈβοΈ#
SUBMISSION_INFO = {
# πΉ TODO: PARTICIPANTS MUST ADD PROPER SUBMISSION INFO FOR THE SUBMISSION πΉ
# This will be visible to the organizers
# DONT change the keys, only add your info
"Participant_Names": "Sushant Gautam, Steven Hicks and Vajita Thambawita",
"Affiliations": "SimulaMet",
"Contact_emails": ["[email protected]", "[email protected]"],
# But, the first email only will be used for correspondance
"Team_Name": "SimulaMetmedVQA Rangers",
"Country": "Norway",
"Notes_to_organizers": '''
eg, We have finetund XXX model
This is optional . .
Used data augmentations . .
Custom info about the model . .
Any insights. .
+ Any informal things you like to share about this submission.
'''
}
# πΉ TODO: PARTICIPANTS MUST LOAD THEIR MODEL HERE, EDIT AS NECESSARY FOR YOUR MODEL πΉ
# can add necessary library imports here
hf_pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to(device)
hf_pipe.load_lora_weights("waitwhoami/sd-kvasir-imagen-demo")
hf_pipe.safety_checker = lambda images, clip_input: (images, None)
hf_pipe.set_progress_bar_config(disable=True)
print("π Model loaded successfully. Proceeding to image generation...")
# π----------------END SUBMISISON DETAILS and MODEL LOADING -----------------π#
start_time, post_model_mem = time.time(), get_mem()
total_time, final_mem = round(
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2)
model_mem_used = round(post_model_mem - initial_mem, 2)
num_per_prompt = 10
timestamp = time.strftime("%Y%m%d_%H%M%S")
output_folder = f"generated_images_{timestamp}"
# Ensure output folder exists
os.makedirs(output_folder, exist_ok=True)
# print full path of output folder
print(f"π Output folder: {os.path.abspath(output_folder)}")
# βοΈβοΈ___________EDIT SECTION 2: IMAGE GENERATION___________βοΈβοΈ#
# πΉ TODO: PARTICIPANTS SHOULD MODIFY THIS STEP πΉ
# you have access to 'test_prompts' with all the prompts needed to be generated
batch_size = 2 # Adjust based on your GPU memory, number of prompts to generate in one go
print(
f"π We have {len(test_prompts)} prompts and we are generating for {batch_size} prompts at once. ")
for i in tqdm(range(0, len(test_prompts), batch_size), desc="π Generating images"):
batch = test_prompts[i:i + batch_size]
batched_prompts = [p for p in batch for _ in range(num_per_prompt)]
images = hf_pipe(batched_prompts).images
for j, img in enumerate(images):
p_idx = i + j // num_per_prompt + 1
i_idx = j % num_per_prompt + 1
img.save(f"{output_folder}/prompt{p_idx:04d}_img{i_idx:04d}.png")
print("π Image generation completed. Proceeding to feature extraction...")
# make sure 'output_folder' with generated images is available with proper filenames
# π________________ END IMAGE GENERATION ________________π#
# β DO NOT EDIT any lines below from here, can edit only upto decoding step above as required. β
# Ensures answer is a string
saved_files = [f for f in os.listdir(output_folder) if f.endswith('.png')]
expected_count = len(test_prompts) * num_per_prompt
assert len(
saved_files) == expected_count, f"Expected {expected_count} images, but found {len(saved_files)}."
total_time, final_mem = round(
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2)
model_mem_used = round(post_model_mem - initial_mem, 2)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
modelx = AutoModel.from_pretrained(
"ikim-uk-essen/BiomedCLIP_ViT_patch16_224", trust_remote_code=True).to(DEVICE)
processor = AutoProcessor.from_pretrained(
"ikim-uk-essen/BiomedCLIP_ViT_patch16_224", trust_remote_code=True)
modelx.eval()
def extract_features(batch):
inputs = processor(images=batch['image'], return_tensors="pt").to(DEVICE)
with torch.no_grad():
feats = modelx(**inputs).last_hidden_state[:, 0, :]
return {'features': feats.cpu().numpy()}
def extract_features_from_paths(image_paths, batch_size=32):
imgs = [Image.open(p).convert('RGB') for p in image_paths]
dataset = Dataset.from_dict({'image': imgs})
dataset = dataset.map(extract_features, batched=True,
batch_size=batch_size)
return np.vstack(dataset['features'])
def fid_score(feat1, feat2):
mu1, mu2 = feat1.mean(0), feat2.mean(0)
sigma1, sigma2 = np.cov(feat1, rowvar=False), np.cov(feat2, rowvar=False)
covmean = sqrtm(sigma1 @ sigma2).real
return ((mu1 - mu2)**2).sum() + np.trace(sigma1 + sigma2 - 2 * covmean)
def diversity_score(features):
features = normalize(features, axis=1)
return pdist(features).mean()
def mean_cosine_sim(feat1, feat2):
feat1 = normalize(feat1, axis=1)
feat2 = normalize(feat2, axis=1)
return cosine_similarity(feat1, feat2).mean()
# --- Organize generated images ---
generated_files = sorted(
[f for f in os.listdir(output_folder) if f.endswith(".png")])
prompt_to_images = {}
for f in generated_files:
prompt_idx = int(f.split("_")[0].replace("prompt", ""))
prompt_to_images.setdefault(prompt_idx, []).append(
os.path.join(output_folder, f))
print("π Extracting features for generated images...")
all_features = {}
for prompt_idx, paths in tqdm(prompt_to_images.items(), desc="Extracting generated image's features"):
all_features[prompt_idx] = extract_features_from_paths(paths)
print("π Feature extraction completed. Proceeding to scoring...")
val_dataset = load_dataset("SimulaMet/Kvasir-VQA-test", split="validation")
prompt_to_real = requests.get(
"https://huggingface.co./datasets/SimulaMet/Kvasir-VQA-test/resolve/main/real_mapping").json()
print("Now, extracting real image's features...")
seen = set()
real_features_cache_ = val_dataset.filter(lambda x: x["img_id"] not in seen and not seen.add(x["img_id"])).map(
extract_features,
batched=True,
batch_size=128
)
real_features_cache = {
image_id: feature
for image_id, feature in zip(real_features_cache_["img_id"], real_features_cache_["features"])
}
# --- Pair prompts: (0,1), (2,3), ...
sorted_prompts = sorted(all_features.keys())
objectives = []
for i in range(0, len(sorted_prompts)//2, 2):
idx_A = sorted_prompts[i]
idx_B = sorted_prompts[i + 1]
A = all_features[idx_A]
B = all_features[idx_B]
objectives.append((idx_A, idx_B, A, B))
# --- Per-objective Metrics ---
fids, agreements, diversities = [], [], []
all_generated, all_real = [], []
per_prompt_data = []
print("π Calculating metrics and preparing output data...")
for idx_A, idx_B, A, B in tqdm(objectives, desc="Scoring"):
sim_ab = mean_cosine_sim(A, B)
fid_ab = fid_score(A, B)
div_A = diversity_score(A)
div_B = diversity_score(B)
# Shared real reference for both prompts
# same as prompt_to_real[str(idx_B)]
real_keys = prompt_to_real[str(idx_A)]
# flag by SUSHANT, just to debug ;)
# real_keys = random.sample(val_dataset['img_id'], len(real_keys))
real_feats = np.array([real_features_cache[key] for key in real_keys])
fid_A_real = fid_score(A, real_feats)
fid_B_real = fid_score(B, real_feats)
# Collect for global metrics
all_generated.extend([*A, *B])
all_real.extend(real_feats)
fids.append((fid_A_real + fid_B_real) / 2)
agreements.append(sim_ab)
diversities.extend([div_A, div_B])
per_prompt_data.append({
"Prompt A": idx_A,
"Prompt B": idx_B,
"FID(A,B)": fid_ab,
"Agreement": sim_ab,
"Diversity A": div_A,
"Diversity B": div_B,
"FID A vs Real": fid_A_real,
"FID B vs Real": fid_B_real,
"Real Ref": real_feats
})
# --- Global FID ---
all_generated = np.array(all_generated)
all_real = np.array(all_real)
global_fid = fid_score(all_generated, all_real)
# --- Global Scores ---
fidelity_norm = np.mean(100 / (1 + np.array(fids)))
agreement_norm = np.mean(agreements)
diversity_norm = np.mean(diversities)
# final_score = 0.5 * fidelity_norm + 0.3 * agreement_norm + 0.2 * diversity_norm #lets not use this for now
# --- Output ---
public_scores = {
"fidelity": round(float(fidelity_norm), 2),
"agreement": round(float(agreement_norm), 2),
"diversity": round(float(diversity_norm), 2),
"FBD": round(float(global_fid), 2)
}
# end calculating metrics
print(
f"π Metrics calculated. Fidelity: {fidelity_norm}, Agreement: {agreement_norm}, Diversity: {diversity_norm}")
print("π Saving results to 'predictions_2.json'...")
output_data = {"submission_info": SUBMISSION_INFO, "public_scores": public_scores, "total_time": total_time, "time_per_item": total_time / len(val_dataset),
"memory_used_mb": final_mem, "model_memory_mb": model_mem_used, "gpu_name": gpu_name, "predictions": json.dumps({k: v.tolist() for k, v in all_features.items()}), "debug": {
"packages": json.loads(subprocess.check_output([sys.executable, "-m", "pip", "list", "--format=json"])),
"system": {
"python": platform.python_version(),
"os": platform.system(),
"platform": platform.platform(),
"arch": platform.machine()
}}}
with open("predictions_2.json", "w") as f:
json.dump(output_data, f, indent=4)
print("β
Results saved successfully. Script execution completed.")
print(f"Time: {total_time}s | Mem: {final_mem}MB | Model Load Mem: {model_mem_used}MB | GPU: {gpu_name}")
print("β
Scripts Looks Good! Generation process completed successfully. Results saved to 'predictions_2.json'.")
print("Next Step:\n 1) Upload this submission_task2.py script file to HuggingFace model repository.")
print('''\n 2) Make a submission to the competition:\n Run:: medvqa validate_and_submit --competition=gi-2025 --task=2 --repo_id=...''')
|