File size: 6,142 Bytes
ba8c7e3 8bd97dc ba8c7e3 f836573 ba8c7e3 8bd97dc ba8c7e3 8bd97dc ba8c7e3 8bd97dc ba8c7e3 8bd97dc ba8c7e3 8bd97dc 88cd373 8bd97dc b1f5a9f 8bd97dc ba8c7e3 8bd97dc ba8c7e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from transformers import AutoModelForCausalLM
from datasets import load_dataset
from transformers import AutoProcessor
import torch
import json
import time
from tqdm import tqdm
import subprocess
import platform
import sys
from evaluate import load
bleu = load("bleu")
rouge = load("rouge")
meteor = load("meteor")
val_dataset = load_dataset("SimulaMet/Kvasir-VQA-test", split="validation")
predictions = [] # List to store predictions
gpu_name = torch.cuda.get_device_name(
0) if torch.cuda.is_available() else "cpu"
device = "cuda" if torch.cuda.is_available() else "cpu"
def get_mem(): return torch.cuda.memory_allocated(device) / \
(1024 ** 2) if torch.cuda.is_available() else 0
initial_mem = get_mem()
# βοΈβοΈ--------EDIT SECTION 1: SUBMISISON DETAILS and MODEL LOADING --------βοΈβοΈ#
SUBMISSION_INFO = {
# πΉ TODO: PARTICIPANTS MUST ADD PROPER SUBMISSION INFO FOR THE SUBMISSION πΉ
# This will be visible to the organizers
# DONT change the keys, only add your info
"Participant_Names": "Sushant Gautam, Steven Hicks and Vajita Thambawita",
"Affiliations": "SimulaMet",
"Contact_emails": ["[email protected]", "[email protected]"],
# But, the first email only will be used for correspondance
"Team_Name": "SimulaMetmedVQA Rangers",
"Country": "Norway",
"Notes_to_organizers": '''
eg, We have finetund XXX model
This is optional . .
Used data augmentations . .
Custom info about the model . .
Any insights. .
+ Any informal things you like to share about this submission.
'''
}
# πΉ TODO: PARTICIPANTS MUST LOAD THEIR MODEL HERE, EDIT AS NECESSARY FOR YOUR MODEL πΉ
# can add necessary library imports here
model_hf = AutoModelForCausalLM.from_pretrained(
"SushantGautam/Florence-2-vqa-demo", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-base-ft", trust_remote_code=True)
model_hf.eval() # Ensure model is in evaluation mode
# π----------------END SUBMISISON DETAILS and MODEL LOADING -----------------π#
start_time, post_model_mem = time.time(), get_mem()
total_time, final_mem = round(
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2)
model_mem_used = round(post_model_mem - initial_mem, 2)
for idx, ex in enumerate(tqdm(val_dataset, desc="Validating")):
question = ex["question"]
image = ex["image"].convert(
"RGB") if ex["image"].mode != "RGB" else ex["image"]
# you have access to 'question' and 'image' variables for each example
# βοΈβοΈ___________EDIT SECTION 2: ANSWER GENERATION___________βοΈβοΈ#
# πΉ TODO: PARTICIPANTS CAN MODIFY THIS TOKENIZATION STEP IF NEEDED πΉ
inputs = processor(text=[question], images=[image],
return_tensors="pt", padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()
if k not in ['labels', 'attention_mask']}
# πΉ TODO: PARTICIPANTS CAN MODIFY THE GENERATION AND DECODING METHOD HERE πΉ
with torch.no_grad():
output = model_hf.generate(**inputs)
answer = processor.tokenizer.decode(output[0], skip_special_tokens=True)
# make sure 'answer' variable will hold answer (sentence/word) as str
# π________________ END ANSWER GENERATION ________________π#
# β DO NOT EDIT any lines below from here, can edit only upto decoding step above as required. β
# Ensures answer is a string
assert isinstance(
answer, str), f"Generated answer at index {idx} is not a string"
# Appends prediction
predictions.append(
{"index": idx, "img_id": ex["img_id"], "question": ex["question"], "answer": answer})
# Ensure all predictions match dataset length
assert len(predictions) == len(
val_dataset), "Mismatch between predictions and dataset length"
total_time, final_mem = round(
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2)
model_mem_used = round(post_model_mem - initial_mem, 2)
# caulcualtes metrics
references = [[e] for e in val_dataset['answer']]
preds = [pred['answer'] for pred in predictions]
bleu_result = bleu.compute(predictions=preds, references=references)
rouge_result = rouge.compute(predictions=preds, references=references)
meteor_result = meteor.compute(predictions=preds, references=references)
bleu_score = round(bleu_result['bleu'], 2)
rouge1_score = round(float(rouge_result['rouge1']), 2)
rouge2_score = round(float(rouge_result['rouge2']), 2)
rougeL_score = round(float(rouge_result['rougeL']), 2)
meteor_score = round(float(meteor_result['meteor']), 2)
public_scores = {
'bleu': bleu_score,
'rouge1': rouge1_score,
'rouge2': rouge2_score,
'rougeL': rougeL_score,
'meteor': meteor_score
}
print("β¨Public scores: ", public_scores)
# Saves predictions to a JSON file
output_data = {"submission_info": SUBMISSION_INFO, "public_scores": public_scores,
"predictions": predictions, "total_time": total_time, "time_per_item": total_time / len(val_dataset),
"memory_used_mb": final_mem, "model_memory_mb": model_mem_used, "gpu_name": gpu_name,
"debug": {
"packages": json.loads(subprocess.check_output([sys.executable, "-m", "pip", "list", "--format=json"])),
"system": {
"python": platform.python_version(),
"os": platform.system(),
"platform": platform.platform(),
"arch": platform.machine()
}}}
with open("predictions_1.json", "w") as f:
json.dump(output_data, f, indent=4)
print(f"Time: {total_time}s | Mem: {final_mem}MB | Model Load Mem: {model_mem_used}MB | GPU: {gpu_name}")
print("β
Scripts Looks Good! Generation process completed successfully. Results saved to 'predictions_1.json'.")
print("Next Step:\n 1) Upload this submission_task1.py script file to HuggingFace model repository.")
print('''\n 2) Make a submission to the competition:\n Run:: medvqa validate_and_submit --competition=gi-2025 --task=1 --repo_id=...''')
|