Shreyas94 commited on
Commit
d8b5900
·
verified ·
1 Parent(s): ec507b2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -12
app.py CHANGED
@@ -6,6 +6,7 @@ import torch
6
  import gradio as gr
7
  from transformers import AutoModelForCausalLM, AutoTokenizer
8
  import logging
 
9
 
10
  # Set up logging
11
  logging.basicConfig(level=logging.DEBUG)
@@ -231,9 +232,6 @@ def chat_interface(user_input, history, web_search, decoding_strategy, temperatu
231
  # Ensure the tokenizer is accessible within the function scope
232
  global tokenizer
233
 
234
- # Ensure the input is correctly formatted as a dictionary
235
- user_input = {"text": user_input}
236
-
237
  # Perform model inference
238
  response = model_inference(
239
  user_prompt=user_input,
@@ -246,10 +244,10 @@ def chat_interface(user_input, history, web_search, decoding_strategy, temperatu
246
  tokenizer=tokenizer # Pass tokenizer to the model_inference function
247
  )
248
 
249
- # Update chat history
250
- history.append([user_input["text"], response])
251
 
252
- # Return the updated history
253
  return history, response
254
 
255
  # Define the Gradio interface components
@@ -257,7 +255,7 @@ interface = gr.Interface(
257
  fn=chat_interface,
258
  inputs=[
259
  gr.Textbox(label="User Input", placeholder="Type your message here..."),
260
- gr.State([], label="Chat History"),
261
  gr.Checkbox(label="Perform Web Search"),
262
  gr.Radio(["Greedy", "Top P Sampling"], label="Decoding strategy"),
263
  gr.Slider(minimum=0.0, maximum=2.0, step=0.05, label="Sampling temperature", value=0.5),
@@ -265,11 +263,10 @@ interface = gr.Interface(
265
  gr.Slider(minimum=0.01, maximum=5.0, step=0.01, label="Repetition penalty", value=1),
266
  gr.Slider(minimum=0.01, maximum=0.99, step=0.01, label="Top P", value=0.9)
267
  ],
268
- outputs=[
269
- gr.Chatbot(label="Assistant Response"),
270
- gr.State([])
271
- ],
272
- live=False
273
  )
274
 
275
  # Launch the Gradio interface
 
6
  import gradio as gr
7
  from transformers import AutoModelForCausalLM, AutoTokenizer
8
  import logging
9
+ import feedparser
10
 
11
  # Set up logging
12
  logging.basicConfig(level=logging.DEBUG)
 
232
  # Ensure the tokenizer is accessible within the function scope
233
  global tokenizer
234
 
 
 
 
235
  # Perform model inference
236
  response = model_inference(
237
  user_prompt=user_input,
 
244
  tokenizer=tokenizer # Pass tokenizer to the model_inference function
245
  )
246
 
247
+ # Update the chat history with the new interaction
248
+ history.append([user_input, response])
249
 
250
+ # Return the updated history and the response
251
  return history, response
252
 
253
  # Define the Gradio interface components
 
255
  fn=chat_interface,
256
  inputs=[
257
  gr.Textbox(label="User Input", placeholder="Type your message here..."),
258
+ gr.State([]), # Chat history
259
  gr.Checkbox(label="Perform Web Search"),
260
  gr.Radio(["Greedy", "Top P Sampling"], label="Decoding strategy"),
261
  gr.Slider(minimum=0.0, maximum=2.0, step=0.05, label="Sampling temperature", value=0.5),
 
263
  gr.Slider(minimum=0.01, maximum=5.0, step=0.01, label="Repetition penalty", value=1),
264
  gr.Slider(minimum=0.01, maximum=0.99, step=0.01, label="Top P", value=0.9)
265
  ],
266
+ outputs=[gr.State([]), gr.Textbox(label="Assistant Response")],
267
+ live=True,
268
+ title="OpenGPT-4o-Chatty",
269
+ description="Chat with the AI and optionally perform web searches to enhance responses."
 
270
  )
271
 
272
  # Launch the Gradio interface