Spaces:
Build error
Build error
File size: 9,069 Bytes
28545e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from ydata_profiling import ProfileReport
import json
import os
from langchain.llms import HuggingFaceHub
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain.tools.python.tool import PythonAstREPLTool
from langchain.agents import AgentExecutor, create_react_agent
from langchain_experimental.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
from langchain.agents.agent_types import AgentType
# Set page configuration
st.set_page_config(page_title="Interactive Data Profiler & Chat", layout="wide", page_icon="π")
# Create session states for DataFrame and chat history if they don't exist
if 'df' not in st.session_state:
st.session_state.df = None
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'suggestions' not in st.session_state:
st.session_state.suggestions = []
# Initialize Hugging Face API
def get_llm():
# Using a small but capable open-source model
llm = HuggingFaceHub(
repo_id="google/flan-t5-large",
model_kwargs={"temperature": 0.1, "max_length": 512},
huggingfacehub_api_token=os.environ.get("HUGGINGFACE_API_TOKEN", "")
)
return llm
# Function to generate report
def generate_profile_report(df):
with st.spinner("Generating profile report..."):
profile = ProfileReport(df,
title="Profiling Report",
explorative=True,
minimal=True) # Minimal for faster processing
return profile
# Function to generate query suggestions
def generate_suggestions(df):
# Get basic info about the dataframe
num_rows = df.shape[0]
num_cols = df.shape[1]
column_names = df.columns.tolist()
data_types = df.dtypes.astype(str).tolist()
# Sample suggestions based on dataframe structure
suggestions = [
f"How many rows are in this dataset?",
f"What are all the column names?",
f"Show me the first 5 rows",
f"What is the average of {column_names[0] if len(column_names) > 0 else 'column'}"
]
# Add column-specific suggestions
for col, dtype in zip(column_names[:min(3, len(column_names))], data_types[:min(3, len(data_types))]):
if 'int' in dtype or 'float' in dtype:
suggestions.append(f"What is the mean value of {col}?")
suggestions.append(f"What is the maximum value of {col}?")
elif 'object' in dtype or 'str' in dtype:
suggestions.append(f"What are the unique values in {col}?")
suggestions.append(f"How many missing values in {col}?")
return suggestions
# Function to execute pandas operations safely
def execute_pandas_query(df, query):
try:
# Create pandas agent
agent = create_pandas_dataframe_agent(
llm=get_llm(),
df=df,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
# Execute query
result = agent.run(query)
return result
except Exception as e:
# Fallback to basic operations if agent fails
if "rows" in query.lower() and "how many" in query.lower():
return f"The dataset has {df.shape[0]} rows."
elif "columns" in query.lower() and "how many" in query.lower():
return f"The dataset has {df.shape[1]} columns."
elif "column names" in query.lower():
return f"The column names are: {', '.join(df.columns.tolist())}"
elif "first" in query.lower() and "rows" in query.lower():
num = 5 # Default
for word in query.split():
if word.isdigit():
num = int(word)
break
return df.head(num).to_string()
elif "describe" in query.lower():
return df.describe().to_string()
else:
return f"I couldn't process that query. Error: {str(e)}"
# Main app header
st.title("π Interactive Data Profiler & Chat")
st.markdown("""
Upload your CSV file to get detailed profiling and ask questions about your data!
This app combines interactive data profiling with a chat interface for data exploration.
""")
# File uploader
uploaded_file = st.file_uploader("Upload a CSV file", type="csv")
# Process uploaded file
if uploaded_file is not None:
try:
# Read CSV into DataFrame
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.success(f"β
File uploaded successfully! Found {df.shape[0]} rows and {df.shape[1]} columns.")
# Generate suggestions when a new file is uploaded
if len(st.session_state.suggestions) == 0:
st.session_state.suggestions = generate_suggestions(df)
# Create tabs for different functionalities
tab1, tab2 = st.tabs(["π Data Profiling", "π¬ Data Chat"])
# Tab 1: Data Profiling
with tab1:
st.header("Data Profiling")
# Basic info
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Rows", df.shape[0])
with col2:
st.metric("Columns", df.shape[1])
with col3:
st.metric("Missing Values", df.isna().sum().sum())
# Show raw data sample
with st.expander("Preview Data"):
st.dataframe(df.head(10))
# Generate the profile report
profile = generate_profile_report(df)
# Convert report to HTML and display
report_html = profile.to_html()
st.components.v1.html(report_html, height=1000, scrolling=True)
# Provide download button
st.write("### Download the Profiling Report")
report_bytes = report_html.encode('utf-8')
st.download_button(
label="Download Report (HTML)",
data=report_bytes,
file_name="profiling_report.html",
mime="text/html"
)
# Tab 2: Interactive Chat
with tab2:
st.header("Chat with Your Data")
st.info("Ask questions about your data and get instant answers!")
# Chat input and suggested questions
user_question = st.text_input("Your question:", key="question_input")
# Show suggestion chips
st.write("Suggested questions:")
cols = st.columns(2)
for i, suggestion in enumerate(st.session_state.suggestions):
col_idx = i % 2
with cols[col_idx]:
if st.button(suggestion, key=f"suggestion_{i}"):
user_question = suggestion
st.session_state.question_input = suggestion
st.experimental_rerun()
# Process question
if user_question:
st.session_state.chat_history.append({"role": "user", "content": user_question})
# Get answer
with st.spinner("Thinking..."):
answer = execute_pandas_query(df, user_question)
# Add answer to chat history
st.session_state.chat_history.append({"role": "assistant", "content": answer})
# Display chat history
st.write("### Conversation History")
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"**You:** {message['content']}")
else:
st.markdown(f"**Assistant:** {message['content']}")
st.markdown("---")
# Clear chat button
if st.button("Clear Chat History"):
st.session_state.chat_history = []
st.experimental_rerun()
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
st.info("π Please upload a CSV file to begin.")
# Placeholder visuals
st.markdown("### What you can do with this app:")
col1, col2 = st.columns(2)
with col1:
st.markdown("**π Data Profiling**")
st.markdown("- Automatic data quality assessment")
st.markdown("- Column statistics and distributions")
st.markdown("- Correlation analysis")
st.markdown("- Missing values analysis")
with col2:
st.markdown("**π¬ Interactive Data Chat**")
st.markdown("- Ask natural language questions")
st.markdown("- Get instant insights")
st.markdown("- Suggested questions for quick exploration")
st.markdown("- No coding required!") |