Spaces:
Sleeping
Sleeping
add compare resnet model
Browse files- app.py +4 -7
- inference_resnet_v2.py +2 -4
app.py
CHANGED
@@ -18,6 +18,7 @@ import glob
|
|
18 |
from inference_sam import segmentation_sam
|
19 |
from explanations import explain
|
20 |
from inference_resnet import get_triplet_model
|
|
|
21 |
from inference_beit import get_triplet_model_beit
|
22 |
import pathlib
|
23 |
import tensorflow as tf
|
@@ -122,11 +123,7 @@ def get_model(model_name):
|
|
122 |
model.load_weights('model_classification/fossil-new.h5')
|
123 |
elif model_name == 'Fossils':
|
124 |
n_classes = 142
|
125 |
-
model =
|
126 |
-
embedding_units = 256,
|
127 |
-
embedding_depth = 2,
|
128 |
-
n_classes = n_classes)
|
129 |
-
model.load_weights('model_classification/fossil-model.h5')
|
130 |
else:
|
131 |
raise ValueError(f"Model name '{model_name}' is not recognized")
|
132 |
return model,n_classes
|
@@ -161,7 +158,7 @@ def classify_image(input_image, model_name):
|
|
161 |
elif 'Fossils' ==model_name:
|
162 |
from inference_beit import inference_resnet_finer_beit
|
163 |
model,n_classes = get_model(model_name)
|
164 |
-
result =
|
165 |
return result
|
166 |
return None
|
167 |
|
@@ -189,7 +186,7 @@ def get_embeddings(input_image,model_name):
|
|
189 |
elif 'Fossils' ==model_name:
|
190 |
from inference_beit import inference_resnet_embedding_beit
|
191 |
model,n_classes = get_model(model_name)
|
192 |
-
result =
|
193 |
return result
|
194 |
return None
|
195 |
|
|
|
18 |
from inference_sam import segmentation_sam
|
19 |
from explanations import explain
|
20 |
from inference_resnet import get_triplet_model
|
21 |
+
from inference_resnet_v2 import get_resnet_model,inference_resnet_embedding_v2,inference_resnet_finer_v2
|
22 |
from inference_beit import get_triplet_model_beit
|
23 |
import pathlib
|
24 |
import tensorflow as tf
|
|
|
123 |
model.load_weights('model_classification/fossil-new.h5')
|
124 |
elif model_name == 'Fossils':
|
125 |
n_classes = 142
|
126 |
+
model,_,_ = get_resnet_model('model_classification/fossil-model.h5')
|
|
|
|
|
|
|
|
|
127 |
else:
|
128 |
raise ValueError(f"Model name '{model_name}' is not recognized")
|
129 |
return model,n_classes
|
|
|
158 |
elif 'Fossils' ==model_name:
|
159 |
from inference_beit import inference_resnet_finer_beit
|
160 |
model,n_classes = get_model(model_name)
|
161 |
+
result = inference_resnet_finer_v2(input_image,model,size=384,n_classes=n_classes)
|
162 |
return result
|
163 |
return None
|
164 |
|
|
|
186 |
elif 'Fossils' ==model_name:
|
187 |
from inference_beit import inference_resnet_embedding_beit
|
188 |
model,n_classes = get_model(model_name)
|
189 |
+
result = inference_resnet_embedding_v2(input_image,model,size=384,n_classes=n_classes)
|
190 |
return result
|
191 |
return None
|
192 |
|
inference_resnet_v2.py
CHANGED
@@ -10,10 +10,8 @@ tf.config.set_visible_devices([], 'GPU')
|
|
10 |
from keras.applications import resnet
|
11 |
import tensorflow as tf
|
12 |
import keras
|
13 |
-
import tensorflow.keras.layers as L
|
14 |
import os
|
15 |
|
16 |
-
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
|
17 |
import matplotlib.pyplot as plt
|
18 |
from typing import Tuple
|
19 |
from huggingface_hub import snapshot_download
|
@@ -51,7 +49,7 @@ def parse_results(top_n,logits):
|
|
51 |
results[label] = float(logits[n])
|
52 |
return results
|
53 |
|
54 |
-
def
|
55 |
|
56 |
|
57 |
x = tf.image.resize(x, (size, size))
|
@@ -61,7 +59,7 @@ def inference_resnet_embedding(x,model,size=384,n_classes=140,n_top=10):
|
|
61 |
|
62 |
return embedding
|
63 |
|
64 |
-
def
|
65 |
|
66 |
x = tf.image.resize(x, (size, size))
|
67 |
x = tf.reshape(x, (-1, 384, 384, 3))/255
|
|
|
10 |
from keras.applications import resnet
|
11 |
import tensorflow as tf
|
12 |
import keras
|
|
|
13 |
import os
|
14 |
|
|
|
15 |
import matplotlib.pyplot as plt
|
16 |
from typing import Tuple
|
17 |
from huggingface_hub import snapshot_download
|
|
|
49 |
results[label] = float(logits[n])
|
50 |
return results
|
51 |
|
52 |
+
def inference_resnet_embedding_v2(x,model,size=384,n_classes=140,n_top=10):
|
53 |
|
54 |
|
55 |
x = tf.image.resize(x, (size, size))
|
|
|
59 |
|
60 |
return embedding
|
61 |
|
62 |
+
def inference_resnet_finer_v2(x,model,size=384,n_classes=142,n_top=10):
|
63 |
|
64 |
x = tf.image.resize(x, (size, size))
|
65 |
x = tf.reshape(x, (-1, 384, 384, 3))/255
|