Spaces:
Sleeping
Sleeping
from sklearn.decomposition import PCA | |
import pickle as pk | |
import numpy as np | |
import pandas as pd | |
pca_fossils = pk.load(open('pca_fossils_170_finer.pkl','rb')) | |
pca_leaves = pk.load(open('pca_leaves_170_finer.pkl','rb')) | |
embedding_fossils = np.load('embedding_fossils_170_finer.npy') | |
#embedding_leaves = np.load('embedding_leaves.npy') | |
fossils_pd= pd.read_csv('fossils_paths.csv') | |
def pca_distance(pca,sample,embedding): | |
s = pca.transform(sample.reshape(1,-1)) | |
all = pca.transform(embedding[:,-1]) | |
distances = np.linalg.norm(all - s, axis=1) | |
print(distances) | |
return np.argsort(distances)[:5] | |
def return_paths(argsorted,files): | |
paths= [] | |
for i in argsorted: | |
paths.append(files[i]) | |
return paths | |
def get_images(embedding): | |
#pca_embedding_fossils = pca_fossils.transform(embedding_fossils[:,-1]) | |
pca_d =pca_distance(pca_fossils,embedding,embedding_fossils) | |
fossils_paths = fossils_pd['file_name'].values | |
paths = return_paths(pca_d,fossils_paths) | |
print(paths) | |
paths= [path.replace('/gpfs/data/tserre/irodri15/Fossils/new_data/leavesdb-v1_1/images/Fossil/Florissant_Fossil/512/full/jpg/', | |
'/media/data_cifs/projects/prj_fossils/data/processed_data/leavesdb-v1_1/images/Fossil/Florissant_Fossil/original/full/jpg/') for path in paths] | |
print(paths) | |
return paths |