File size: 22,057 Bytes
92d14a2
f1c6a3d
 
97f07be
f1c6a3d
e01f7c2
97f07be
f1c6a3d
92d14a2
 
 
 
97f07be
92d14a2
 
 
 
80d9d8d
730f5a5
 
0c61c42
92d14a2
730f5a5
86104a0
 
92d14a2
 
 
 
 
0c61c42
 
 
 
 
 
 
 
86104a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730f5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c61c42
 
 
 
 
 
 
86104a0
 
 
 
 
 
 
730f5a5
c5343e6
730f5a5
92d14a2
c5343e6
92d14a2
 
 
 
 
0c61c42
92d14a2
 
730f5a5
 
92d14a2
 
 
730f5a5
 
92d14a2
86104a0
 
 
 
 
 
0c61c42
730f5a5
0c61c42
c5343e6
92d14a2
 
730f5a5
 
 
 
 
 
 
 
 
 
 
86104a0
 
 
 
 
 
0c61c42
730f5a5
0c61c42
c5343e6
730f5a5
 
92d14a2
730f5a5
 
c5343e6
 
 
730f5a5
86104a0
 
 
 
 
 
730f5a5
86104a0
0c61c42
 
 
c5343e6
86104a0
730f5a5
 
 
86104a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0c095
86104a0
 
3807486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0c095
3807486
 
86104a0
3807486
 
c071975
c577b1b
3807486
c577b1b
3807486
c577b1b
3807486
1f0c095
86104a0
 
 
 
af9c1e6
92d14a2
 
730f5a5
86104a0
92d14a2
 
86104a0
 
 
 
 
 
 
 
 
 
 
 
 
 
f8b140a
86104a0
92d14a2
 
0c61c42
 
 
 
 
92d14a2
 
730f5a5
86104a0
92d14a2
86104a0
92d14a2
 
86104a0
 
 
 
 
 
 
 
 
92d14a2
86104a0
 
 
 
 
1f0c095
 
86104a0
 
 
 
 
 
 
 
 
92d14a2
86104a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0c095
86104a0
 
 
 
 
 
 
 
 
 
 
92d14a2
 
730f5a5
 
 
 
 
 
 
 
c5343e6
 
86104a0
 
 
 
 
 
 
 
 
1f0c095
86104a0
c5343e6
86104a0
c5343e6
 
 
 
 
 
 
 
1f0c095
730f5a5
86104a0
1f0c095
86104a0
 
 
 
1f0c095
86104a0
 
 
 
92d14a2
af9c1e6
92d14a2
78d19ee
ce8b285
78d19ee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

import os
import sys
from env import config_env


config_env()


import gradio as gr
from huggingface_hub import snapshot_download
import cv2 
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference_sam import segmentation_sam
from explanations import explain
from inference_resnet import get_triplet_model
from inference_beit import get_triplet_model_beit
import pathlib
import tensorflow as tf
from closest_sample import get_images,get_diagram


if not os.path.exists('images'):
    REPO_ID='Serrelab/image_examples_gradio'
    snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='dataset',local_dir='images')

if not os.path.exists('dataset'):
  REPO_ID='Serrelab/Fossils'
  token = os.environ.get('READ_TOKEN')
  print(f"Read token:{token}")
  if token is None:
     print("warning! A read token in env variables is needed for authentication.")
  snapshot_download(repo_id=REPO_ID, token=token,repo_type='dataset',local_dir='dataset')

HEADER = '''
<h2><b>Official Gradio Demo</b></h2><h2><a href='https://huggingface.co./spaces/Serrelab/fossil_app' target='_blank'><b>Identifying Florissant Leaf Fossils to Family using Deep Neural Networks </b></a></h2>
Code: <a href='https://github.com/orgs/serre-lab/projects/2' target='_blank'>GitHub</a>. Paper: <a href='' target='_blank'>ArXiv</a>.


'''

"""
**Fossil** a brief intro to the project.
# ❗️❗️❗️**Important Notes:**
# - some notes to users some notes to users some notes to users some notes to users some notes to users some notes to users .
# - some notes to users some notes to users some notes to users some notes to users some notes to users some notes to users.

"""

USER_GUIDE = """
                <div style='background-color: #f0f0f0; padding: 20px; border-radius: 10px;'>
                    <h2>❗️ User Guide</h2>
                    <p>Welcome to the interactive fossil exploration tool. Here's how to get started:</p>
                    <ul>
                        <li><strong>Upload an Image:</strong> Drag and drop or choose from given samples to upload images of fossils.</li>
                        <li><strong>Process Image:</strong> After uploading, click the 'Process Image' button to analyze the image.</li>
                        <li><strong>Explore Results:</strong> Switch to the 'Workbench' tab to check out detailed analysis and results.</li>
                    </ul>
                    <h3>Tips</h3>
                    <ul>
                        <li>Zoom into images on the workbench for finer details.</li>
                        <li>Use the examples below as references for what types of images to upload.</li>
                    </ul>
                    <p>Enjoy exploring! 🌟</p>
                </div>
                """
                
TIPS = """
                ## Tips
                - Zoom into images on the workbench for finer details.
                - Use the examples below as references for what types of images to upload.
                
                Enjoy exploring! 
                """
CITATION = '''
πŸ“§ **Contact** <br>
If you have any questions, feel free to contact us at <b>[email protected]</b>.
'''
"""
πŸ“ **Citation**
cite using this bibtex:...
```
```
πŸ“‹ **License**
"""
def get_model(model_name):
   
        
    if model_name=='Mummified 170':
        n_classes = 170
        model = get_triplet_model(input_shape = (600, 600, 3),
                        embedding_units = 256,
                        embedding_depth = 2,
                        backbone_class=tf.keras.applications.ResNet50V2,
                        nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
        model.load_weights('model_classification/mummified-170.h5')
    elif model_name=='Rock 170':
        n_classes = 171
        model = get_triplet_model(input_shape = (600, 600, 3),
                        embedding_units = 256,
                        embedding_depth = 2,
                        backbone_class=tf.keras.applications.ResNet50V2,
                        nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
        model.load_weights('model_classification/rock-170.h5')
    elif model_name == 'Fossils 142':
        n_classes = 142
        model = get_triplet_model_beit(input_shape = (384, 384, 3),
                                  embedding_units = 256,
                                  embedding_depth = 2,
                                  n_classes = n_classes)
        model.load_weights('model_classification/fossil-142.h5')
    elif model_name == 'Fossils new':
        n_classes = 142
        model = get_triplet_model_beit(input_shape = (384, 384, 3),
                                  embedding_units = 256,
                                  embedding_depth = 2,
                                  n_classes = n_classes)
        model.load_weights('model_classification/fossil-new.h5')
    else:
        raise ValueError(f"Model name '{model_name}' is not recognized") 
    return model,n_classes


def segment_image(input_image):
    img = segmentation_sam(input_image)
    return img

def classify_image(input_image, model_name):
    #segmented_image = segment_image(input_image)
    if 'Rock 170' ==model_name:
        from inference_resnet import inference_resnet_finer
        model,n_classes= get_model(model_name)
        result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
        return result 
    elif 'Mummified 170' ==model_name:
        from inference_resnet import inference_resnet_finer
        model, n_classes= get_model(model_name)
        result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
        return result 
    elif 'Fossils 142' ==model_name:
        from inference_beit import inference_resnet_finer_beit
        model,n_classes = get_model(model_name)
        result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
        return result
    elif 'Fossils new' ==model_name:
        from inference_beit import inference_resnet_finer_beit
        model,n_classes = get_model(model_name)
        result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
        return result
    return None

def get_embeddings(input_image,model_name):
    if 'Rock 170' ==model_name:
        from inference_resnet import inference_resnet_embedding
        model,n_classes= get_model(model_name)
        result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
        return result 
    elif 'Mummified 170' ==model_name:
        from inference_resnet import inference_resnet_embedding
        model, n_classes= get_model(model_name)
        result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
        return result 
    elif 'Fossils 142' ==model_name:
        from inference_beit import inference_resnet_embedding_beit
        model,n_classes = get_model(model_name)
        result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
        return result
    elif 'Fossils new' ==model_name:
        from inference_beit import inference_resnet_embedding_beit
        model,n_classes = get_model(model_name)
        result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
        return result
    return None
    

def find_closest(input_image,model_name):
    embedding = get_embeddings(input_image,model_name)
    classes, paths = get_images(embedding)
    #outputs = classes+paths
    return classes,paths

def generate_diagram_closest(input_image,model_name,top_k):
    embedding = get_embeddings(input_image,model_name)
    diagram_path = get_diagram(embedding,top_k)
    return diagram_path

def explain_image(input_image,model_name,explain_method,nb_samples):
    model,n_classes= get_model(model_name)
    if model_name=='Fossils 142' or 'Fossils new':
        size = 384
    else:
        size = 600
    #saliency, integrated, smoothgrad,
    classes,exp_list = explain(model,input_image,explain_method,nb_samples,size = size, n_classes=n_classes)
    #original =  saliency + integrated + smoothgrad 
    print('done')
    
    return classes,exp_list

def setup_examples():
    paths = sorted(pathlib.Path('images/').rglob('*.jpg'))
    samples = [path.as_posix() for path in paths if 'fossils' in str(path)][:19]
    examples_fossils = gr.Examples(samples, inputs=input_image,examples_per_page=5,label='Fossils Examples from the dataset')
    samples=[[path.as_posix()] for path in paths  if 'leaves' in  str(path) ][:19]
    examples_leaves = gr.Examples(samples, inputs=input_image,examples_per_page=5,label='Leaves Examples from the dataset')
    return examples_fossils,examples_leaves

def preprocess_image(image, output_size=(300, 300)):
    #shape (height, width, channels)
    h, w = image.shape[:2]

    #padding
    if h > w:
        padding = (h - w) // 2
        image_padded = cv2.copyMakeBorder(image, 0, 0, padding, padding, cv2.BORDER_CONSTANT, value=[0, 0, 0])
    else:
        padding = (w - h) // 2
        image_padded = cv2.copyMakeBorder(image, padding, padding, 0, 0, cv2.BORDER_CONSTANT, value=[0, 0, 0])
    
    # resize
    image_resized = cv2.resize(image_padded, output_size, interpolation=cv2.INTER_AREA)

    return image_resized

def update_display(image):
    original_image = image
    processed_image = preprocess_image(image) 
    instruction = "Image ready. Please switch to the 'Specimen Workbench' tab to check out further analysis and outputs."
    model_name = "Fossils new"
    
    # gr.Dropdown(
    #                 ["Mummified 170", "Rock 170","Fossils 142","Fossils new"],
    #                 multiselect=False,
    #                 value="Fossils new", # default option
    #                 label="Model",
    #                 interactive=True,
    #                 info="Choose the model you'd like to use"
    #             )
    explain_method = "Rise"
    
    # gr.Dropdown(
    #     ["Sobol", "HSIC","Rise","Saliency"],
    #     multiselect=False,
    #     value="Rise", # default option
    #     label="Explain method",
    #     interactive=True,
    #     info="Choose one method to explain the model"
    # )
    sampling_size = 5
    # gr.Slider(1, 5000, value=2000, label="Sampling Size in Rise",interactive=True,visible=True,
    #                                       info="Choose between 1 and 5000")
                
    top_k = 50
    # gr.Slider(10,200,value=50,label="Number of Closest Samples for Distribution Chart",interactive=True,info="Choose between 10 and 200")
    class_predicted = None # gr.Label(label='Class Predicted',num_top_classes=10)
    exp_gallery = None
    # gr.Gallery(label="Explanation Heatmaps for top 5 predicted classes", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
    closest_gallery = None
    # gr.Gallery(label="Closest Images", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
    diagram= None
    # gr.Image(label = 'Bar Chart')
    return original_image,processed_image,processed_image,instruction,model_name,explain_method,sampling_size,top_k,class_predicted,exp_gallery,closest_gallery,diagram
def update_slider_visibility(explain_method):
    bool = explain_method=="Rise"
    return {sampling_size: gr.Slider(1, 5000, value=2000, label="Sampling Size in Rise", visible=bool, interactive=True)}

#minimalist theme
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
    
    with gr.Tab(" Florrissant Fossils"):
        gr.Markdown(HEADER)
        with gr.Row():
            with gr.Column():
                gr.Markdown(USER_GUIDE)
            with gr.Column(scale=2):
                with gr.Column(scale=2):
                    instruction_text = gr.Textbox(label="Instructions", value="Upload/Choose an image and click 'Process Image'.")
                    input_image = gr.Image(label="Input",width="100%",container=True)
                    process_button = gr.Button("Process Image")
                with gr.Column(scale=1):
                    examples_fossils,examples_leaves = setup_examples()
                    
        gr.Markdown(CITATION)
                
    with gr.Tab("Specimen Workbench"):
        with gr.Row():
            with gr.Column():
                original_image = gr.Image(visible = False)
                workbench_image = gr.Image(label="Workbench Image")
                classify_image_button = gr.Button("Classify Image")
            
            # with gr.Column():
            #     #segmented_image = gr.outputs.Image(label="SAM output",type='numpy')
            #     segmented_image=gr.Image(label="Segmented Image", type='numpy')
            #     segment_button = gr.Button("Segment Image")
            #     #classify_segmented_button = gr.Button("Classify Segmented Image")
                
            with gr.Column():
                model_name = gr.Dropdown(
                    ["Mummified 170", "Rock 170","Fossils 142","Fossils new"],
                    multiselect=False,
                    value="Fossils new", # default option
                    label="Model",
                    interactive=True,
                    info="Choose the model you'd like to use"
                )
                explain_method = gr.Dropdown(
                    ["Sobol", "HSIC","Rise","Saliency"],
                    multiselect=False,
                    value="Rise", # default option
                    label="Explain method",
                    interactive=True,
                    info="Choose one method to explain the model"
                )
                # explain_method = gr.CheckboxGroup(["Sobol", "HSIC","Rise","Saliency"],
                #                                   label="explain method",
                #                                   value="Rise",
                #                                   multiselect=False,
                #                                   interactive=True,)
                sampling_size = gr.Slider(1, 30, value=5, label="Sampling Size in Rise",interactive=True,visible=True,
                                          info="Choose between 1 and 30")
                
                top_k = gr.Slider(10,200,value=50,label="Number of Closest Samples for Distribution Chart",interactive=True,info="Choose between 10 and 200")
                explain_method.change(
                    fn=update_slider_visibility, 
                    inputs=explain_method, 
                    outputs=sampling_size
                )
        with gr.Row():
            with gr.Column(scale=1):
                class_predicted = gr.Label(label='Class Predicted',num_top_classes=10)
            with gr.Column(scale=4):
                with gr.Accordion("Explanations "):
                    gr.Markdown("Computing Explanations from the model")
                    with gr.Column():
                        with gr.Row():

                        #original_input = gr.Image(label="Original Frame")
                        #saliency  = gr.Image(label="saliency")
                        #gradcam = gr.Image(label='integraged gradients')
                        #guided_gradcam = gr.Image(label='gradcam')
                        #guided_backprop = gr.Image(label='guided backprop')
                            # exp1 = gr.Image(label = 'Class_name1')
                            # exp2= gr.Image(label = 'Class_name2')
                            # exp3= gr.Image(label = 'Class_name3')
                            # exp4= gr.Image(label = 'Class_name4')
                            # exp5= gr.Image(label = 'Class_name5')
                        
                            exp_gallery = gr.Gallery(label="Explanation Heatmaps for top 5 predicted classes", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
                    
                    generate_explanations = gr.Button("Generate Explanations")
                        
                # with gr.Accordion('Closest Images'):
                #     gr.Markdown("Finding the closest images in the dataset")
                #     with gr.Row():
                #         with gr.Column():
                #             label_closest_image_0 = gr.Markdown('')
                #             closest_image_0 = gr.Image(label='Closest Image',image_mode='contain',width=200, height=200)
                #         with gr.Column():
                #             label_closest_image_1 = gr.Markdown('')
                #             closest_image_1 = gr.Image(label='Second Closest Image',image_mode='contain',width=200, height=200)
                #         with gr.Column():
                #             label_closest_image_2 = gr.Markdown('')
                #             closest_image_2 = gr.Image(label='Third Closest Image',image_mode='contain',width=200, height=200)
                #         with gr.Column():
                #             label_closest_image_3 = gr.Markdown('')
                #             closest_image_3 = gr.Image(label='Forth Closest Image',image_mode='contain', width=200, height=200)
                #         with gr.Column():
                #             label_closest_image_4 = gr.Markdown('')
                #             closest_image_4 = gr.Image(label='Fifth Closest Image',image_mode='contain',width=200, height=200)
                #     find_closest_btn = gr.Button("Find Closest Images")
                with gr.Accordion('Closest Fossil Images'):
                    gr.Markdown("Finding the closest images in the dataset")
                    
                    with gr.Row():
                        closest_gallery = gr.Gallery(label="Closest Images", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
                        #.style(grid=[1, 5], height=200, width=200)

                    find_closest_btn = gr.Button("Find Closest Images")
                    
                #segment_button.click(segment_image, inputs=input_image, outputs=segmented_image)
                classify_image_button.click(classify_image, inputs=[original_image,model_name], outputs=class_predicted)
                # generate_exp.click(exp_image, inputs=[input_image,model_name,explain_method,sampling_size], outputs=[exp1,exp2,exp3,exp4,exp5]) #
                with gr.Accordion('Closest Leaves Images'):
                    gr.Markdown("5 closest leaves")
                with gr.Accordion("Class Distribution of Closest Samples "):
                    gr.Markdown("Visualize class distribution of top-k closest samples in our dataset")
                    with gr.Column():
                        with gr.Row():
                            diagram= gr.Image(label = 'Bar Chart')
                    
                    generate_diagram = gr.Button("Generate Diagram")

               
            
        # with gr.Accordion("Using Diffuser"):
        #     with gr.Column(): 
        #         prompt = gr.Textbox(lines=1, label="Prompt")
        #         output_image = gr.Image(label="Output")
        #         generate_button = gr.Button("Generate Leave")    
        #     with gr.Column():
        #         class_predicted2 = gr.Label(label='Class Predicted from diffuser')
        #         classify_button = gr.Button("Classify Image")


        def update_exp_outputs(input_image,model_name,explain_method,nb_samples):
            labels, images = explain_image(input_image,model_name,explain_method,nb_samples)
            #labels_html = "".join([f'<div style="display: inline-block; text-align: center; width: 18%;">{label}</div>' for label in labels])
            #labels_markdown = f"<div style='width: 100%; text-align: center;'>{labels_html}</div>"
            image_caption=[]
            for i in range(5):
                image_caption.append((images[i],"Predicted Class "+str(i)+": "+labels[i]))
            return image_caption

        generate_explanations.click(fn=update_exp_outputs, inputs=[original_image,model_name,explain_method,sampling_size], outputs=[exp_gallery])

        #find_closest_btn.click(find_closest, inputs=[input_image,model_name], outputs=[label_closest_image_0,label_closest_image_1,label_closest_image_2,label_closest_image_3,label_closest_image_4,closest_image_0,closest_image_1,closest_image_2,closest_image_3,closest_image_4])
        def update_closest_outputs(input_image,model_name):
            labels, images = find_closest(input_image,model_name)
            #labels_html = "".join([f'<div style="display: inline-block; text-align: center; width: 18%;">{label}</div>' for label in labels])
            #labels_markdown = f"<div style='width: 100%; text-align: center;'>{labels_html}</div>"
            image_caption=[]
            for i in range(5):
                image_caption.append((images[i],labels[i]))
            return image_caption

        find_closest_btn.click(fn=update_closest_outputs, inputs=[original_image,model_name], outputs=[closest_gallery])
        #classify_segmented_button.click(classify_image, inputs=[segmented_image,model_name], outputs=class_predicted)

        generate_diagram.click(generate_diagram_closest, inputs=[original_image,model_name,top_k], outputs=diagram)

    process_button.click(
                        fn=update_display,
                        inputs=input_image,
                        outputs=[original_image,input_image,workbench_image,instruction_text,model_name,explain_method,sampling_size,top_k,class_predicted,exp_gallery,closest_gallery,diagram]
                    )

    
        
        
demo.queue()     # manage multiple incoming requests
   
if os.getenv('SYSTEM') == 'spaces':
    demo.launch(width='40%',auth=(os.environ.get('USERNAME'), os.environ.get('PASSWORD')))
else: 
    demo.launch()