Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,71 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
from
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# Optional: Do something with the nodes (e.g., print them)
|
32 |
-
print(nodes)
|
33 |
|
34 |
-
# Run the async function using asyncio
|
35 |
if __name__ == "__main__":
|
36 |
-
|
37 |
-
|
38 |
-
import chromadb
|
39 |
-
from llama_index.vector_stores.chroma import ChromaVectorStore
|
40 |
-
from llama_index.core.ingestion import IngestionPipeline
|
41 |
-
from llama_index.core.node_parser import SentenceSplitter
|
42 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
43 |
-
|
44 |
-
db = chromadb.PersistentClient(path="./pl_db")
|
45 |
-
chroma_collection = db.get_or_create_collection("ppgpl")
|
46 |
-
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
47 |
-
|
48 |
-
pipeline = IngestionPipeline(
|
49 |
-
transformations=[
|
50 |
-
SentenceSplitter(chunk_size=25, chunk_overlap=0),
|
51 |
-
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
|
52 |
-
],
|
53 |
-
vector_store=vector_store,
|
54 |
-
)
|
55 |
-
|
56 |
-
|
57 |
-
from llama_index.core import VectorStoreIndex
|
58 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
59 |
-
|
60 |
-
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
61 |
-
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
|
62 |
-
|
63 |
-
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
64 |
-
|
65 |
-
llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
|
66 |
-
query_engine = index.as_query_engine(
|
67 |
-
llm=llm,
|
68 |
-
response_mode="tree_summarize",
|
69 |
-
)
|
70 |
-
query_engine.query("Солнце на третей ступени")
|
71 |
-
# The meaning of life is 42
|
|
|
1 |
+
# from langchain.document_loaders import DirectoryLoader
|
2 |
+
from langchain_community.document_loaders import DirectoryLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.schema import Document
|
5 |
+
# from langchain.embeddings import OpenAIEmbeddings
|
6 |
+
from langchain_openai import OpenAIEmbeddings
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
+
import openai
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
+
|
13 |
+
# Load environment variables. Assumes that project contains .env file with API keys
|
14 |
+
load_dotenv()
|
15 |
+
#---- Set OpenAI API key
|
16 |
+
# Change environment variable name from "OPENAI_API_KEY" to the name given in
|
17 |
+
# your .env file.
|
18 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
19 |
+
|
20 |
+
CHROMA_PATH = "chroma"
|
21 |
+
DATA_PATH = "RAG"
|
22 |
+
|
23 |
+
|
24 |
+
def main():
|
25 |
+
generate_data_store()
|
26 |
+
|
27 |
+
|
28 |
+
def generate_data_store():
|
29 |
+
documents = load_documents()
|
30 |
+
chunks = split_text(documents)
|
31 |
+
save_to_chroma(chunks)
|
32 |
+
|
33 |
+
|
34 |
+
def load_documents():
|
35 |
+
loader = DirectoryLoader(DATA_PATH, glob="*.md")
|
36 |
+
documents = loader.load()
|
37 |
+
return documents
|
38 |
+
|
39 |
+
|
40 |
+
def split_text(documents: list[Document]):
|
41 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
42 |
+
chunk_size=300,
|
43 |
+
chunk_overlap=100,
|
44 |
+
length_function=len,
|
45 |
+
add_start_index=True,
|
46 |
+
)
|
47 |
+
chunks = text_splitter.split_documents(documents)
|
48 |
+
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
|
49 |
+
|
50 |
+
document = chunks[10]
|
51 |
+
print(document.page_content)
|
52 |
+
print(document.metadata)
|
53 |
+
|
54 |
+
return chunks
|
55 |
+
|
56 |
+
|
57 |
+
def save_to_chroma(chunks: list[Document]):
|
58 |
+
# Clear out the database first.
|
59 |
+
if os.path.exists(CHROMA_PATH):
|
60 |
+
shutil.rmtree(CHROMA_PATH)
|
61 |
+
|
62 |
+
# Create a new DB from the documents.
|
63 |
+
db = Chroma.from_documents(
|
64 |
+
chunks, OpenAIEmbeddings(), persist_directory=CHROMA_PATH
|
65 |
)
|
66 |
+
db.persist()
|
67 |
+
print(f"Saved {len(chunks)} chunks to {CHROMA_PATH}.")
|
68 |
+
|
|
|
|
|
69 |
|
|
|
70 |
if __name__ == "__main__":
|
71 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|