Spaces:
Sleeping
Sleeping
File size: 1,693 Bytes
b973e27 29850df 2f71b8a 29850df 2543ddf 29850df f2f6b48 29850df 5023c48 f2f6b48 29850df 086c24f 29850df 5023c48 29850df 5023c48 29850df 1557b9f 29850df 5023c48 1557b9f 29850df 1557b9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import streamlit as st
from g4f import ChatCompletion
# List of available models
models = [
"gpt-4o", "gpt-4o-mini", "gpt-4",
"gpt-4-turbo", "gpt-3.5-turbo",
"claude-3.7-sonnet", "o3-mini", "o1", "claude-3.5", "llama-3.1-405b", "gemini-flash", "blackboxai-pro", "openchat-3.5", "glm-4-9B", "blackboxai"
]
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Streamlit app title
st.title("Chat with AI Models")
# Model selection
selected_model = st.selectbox("Choose a model:", models)
# Display chat messages from history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input
if user_input := st.chat_input("What do you want to ask?"):
# Display user message
st.chat_message("user").markdown(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
# Get response from selected model
response = ChatCompletion.create(
model=selected_model,
messages=st.session_state.messages
)
# Check and handle response type
if isinstance(response, str):
response_content = response # Directly use if it's a string
else:
try:
response_content = response['choices'][0]['message']['content']
except (IndexError, KeyError):
response_content = "Error: Unexpected response structure."
# Display assistant response
with st.chat_message("assistant"):
st.markdown(response_content)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response_content}) |