|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler |
|
import torch |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) |
|
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( |
|
model_repo_id, subfolder="scheduler", shift=5 |
|
) |
|
pipe = pipe.to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
def truncate_text(text, max_tokens=77): |
|
""" |
|
Truncate the input text to a maximum of max_tokens using the pipeline's tokenizer. |
|
""" |
|
if text.strip() == "": |
|
return text |
|
tokens = pipe.tokenizer(text, truncation=True, max_length=max_tokens, add_special_tokens=True) |
|
truncated_text = pipe.tokenizer.decode(tokens["input_ids"], skip_special_tokens=True) |
|
return truncated_text |
|
|
|
@spaces.GPU(duration=65) |
|
def infer( |
|
prompt, |
|
negative_prompt="", |
|
seed=42, |
|
randomize_seed=False, |
|
width=1024, |
|
height=1024, |
|
guidance_scale=1.5, |
|
num_inference_steps=8, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
prompt = truncate_text(prompt, max_tokens=77) |
|
negative_prompt = truncate_text(negative_prompt, max_tokens=77) if negative_prompt.strip() else "" |
|
|
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
|
|
examples = [ |
|
"A capybara wearing a suit holding a sign that reads Hello World", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(" MagicPrompt trunkation issue resolved # TensorArt Stable Diffusion 3.5 Large TurboX") |
|
gr.Markdown("[8-step distilled turbo model](https://huggingface.co./tensorart/stable-diffusion-3.5-large-TurboX)") |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
result = gr.Image(label="Result", show_label=False) |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=7.5, |
|
step=0.1, |
|
value=1.5, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=8, |
|
) |
|
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|