File size: 5,288 Bytes
6e5e1d5
 
 
 
 
 
 
f11f490
6e5e1d5
 
8103535
6e5e1d5
10ad556
6e5e1d5
10ad556
6e5e1d5
 
ac86146
6e5e1d5
f11f490
1bb64e4
10ad556
1bb64e4
f11f490
 
10ad556
f11f490
 
 
 
6ba66b0
6e5e1d5
 
 
 
 
ac86146
 
6e5e1d5
 
 
 
10ad556
6e5e1d5
 
10ad556
 
 
f11f490
 
10ad556
 
6e5e1d5
 
 
 
 
 
 
 
 
10ad556
6e5e1d5
 
10ad556
6e5e1d5
f11f490
6e5e1d5
 
 
 
 
 
 
 
 
 
 
01cd80c
 
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb64e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
import torch

# Set device and model parameters
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Preload the Stable Diffusion pipeline on GPU (if available)
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def truncate_text(text, max_tokens=77):
    """
    Explicitly truncate a given text to a maximum of `max_tokens` using the pipeline's tokenizer.
    """
    if text.strip() == "":
        return text
    # Tokenize with truncation enabled and a maximum length
    tokens = pipe.tokenizer(text, truncation=True, max_length=max_tokens, add_special_tokens=True)
    truncated_text = pipe.tokenizer.decode(tokens["input_ids"], skip_special_tokens=True)
    return truncated_text

@spaces.GPU(duration=85)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=4.5,
    num_inference_steps=40,
    progress=gr.Progress(track_tqdm=True),
):
    # Randomize seed if requested
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    # Explicitly truncate both prompt and negative prompt to avoid CLIP token warnings.
    prompt = truncate_text(prompt, max_tokens=77)
    negative_prompt = truncate_text(negative_prompt, max_tokens=77) if negative_prompt.strip() else ""
    
    # Generate the image (the pipeline is already on GPU)
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]
    
    return image, seed

# Gradio UI layout remains as before.
examples = [
    "A capybara wearing a suit holding a sign that reads Hello World",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # [Stable Diffusion 3.5 Large (8B)](https://huggingface.co./stabilityai/stable-diffusion-3.5-large)")
        gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3.5) about the Stable Diffusion 3.5 series. Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), or [download model](https://huggingface.co./stabilityai/stable-diffusion-3.5-large) to run locally with ComfyUI or diffusers. MagicPrompt trunkation fixed")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024, 
                )
                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=4.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=40, 
                )
        gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()