Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,288 Bytes
6e5e1d5 f11f490 6e5e1d5 8103535 6e5e1d5 10ad556 6e5e1d5 10ad556 6e5e1d5 ac86146 6e5e1d5 f11f490 1bb64e4 10ad556 1bb64e4 f11f490 10ad556 f11f490 6ba66b0 6e5e1d5 ac86146 6e5e1d5 10ad556 6e5e1d5 10ad556 f11f490 10ad556 6e5e1d5 10ad556 6e5e1d5 10ad556 6e5e1d5 f11f490 6e5e1d5 01cd80c 6e5e1d5 1bb64e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
import torch
# Set device and model parameters
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Preload the Stable Diffusion pipeline on GPU (if available)
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def truncate_text(text, max_tokens=77):
"""
Explicitly truncate a given text to a maximum of `max_tokens` using the pipeline's tokenizer.
"""
if text.strip() == "":
return text
# Tokenize with truncation enabled and a maximum length
tokens = pipe.tokenizer(text, truncation=True, max_length=max_tokens, add_special_tokens=True)
truncated_text = pipe.tokenizer.decode(tokens["input_ids"], skip_special_tokens=True)
return truncated_text
@spaces.GPU(duration=85)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=4.5,
num_inference_steps=40,
progress=gr.Progress(track_tqdm=True),
):
# Randomize seed if requested
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Explicitly truncate both prompt and negative prompt to avoid CLIP token warnings.
prompt = truncate_text(prompt, max_tokens=77)
negative_prompt = truncate_text(negative_prompt, max_tokens=77) if negative_prompt.strip() else ""
# Generate the image (the pipeline is already on GPU)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
# Gradio UI layout remains as before.
examples = [
"A capybara wearing a suit holding a sign that reads Hello World",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Stable Diffusion 3.5 Large (8B)](https://huggingface.co./stabilityai/stable-diffusion-3.5-large)")
gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3.5) about the Stable Diffusion 3.5 series. Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), or [download model](https://huggingface.co./stabilityai/stable-diffusion-3.5-large) to run locally with ComfyUI or diffusers. MagicPrompt trunkation fixed")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|