SeedOfEvil's picture
Update app.py
6b52712 verified
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the MagicPrompt-Stable-Diffusion model and tokenizer
model_name = "Gustavosta/MagicPrompt-Stable-Diffusion"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cpu")
@spaces.GPU
def expand_prompt(prompt, num_variants=5, max_length=100):
"""
Generate expanded prompts using a specialized model fine-tuned for Stable Diffusion.
"""
# Move model to GPU
model.to("cuda")
# Tokenize input prompt
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
# Generate multiple prompt variants
outputs = model.generate(
**inputs,
max_length=max_length,
do_sample=True,
num_return_sequences=num_variants,
pad_token_id=tokenizer.eos_token_id
)
# Decode generated prompts
expanded_prompts = [tokenizer.decode(output, skip_special_tokens=True).strip() for output in outputs]
# Move model back to CPU
model.to("cpu")
return "\n\n".join(expanded_prompts)
# Create a Gradio Interface
iface = gr.Interface(
fn=expand_prompt,
inputs=gr.Textbox(lines=2, placeholder="Enter your basic prompt here...", label="Basic Prompt"),
outputs=gr.Textbox(lines=10, label="Expanded Prompts"),
title="Prompt Expansion Generator",
description=(
"Enter a basic prompt and receive multiple expanded prompt variants optimized for Stable Diffusion. Using ZeroGPU feature, results take 3 seconds "
"This tool uses a specialized model fine-tuned on Stable Diffusion prompts. "
"Simply copy the output for use with your image-generation pipeline. Thanks to https://huggingface.co./Gustavosta/MagicPrompt-Stable-Diffusion for the model!"
)
)
if __name__ == "__main__":
iface.launch()