Spaces:
Runtime error
Runtime error
File size: 6,436 Bytes
203c3cd 7151461 9d1731e 73933cb 9d1731e 7cf68eb 73933cb 531980d 73933cb 9d1731e 73933cb 9d1731e 73933cb 7cf68eb 9d1731e 73933cb 9d1731e 73933cb 9d1731e 7cf68eb 9d1731e 7cf68eb 9d1731e 7cf68eb 9d1731e 73933cb 9d1731e 7cf68eb 73933cb 7cf68eb 73933cb 9d1731e 73933cb 9d1731e 73933cb 9d1731e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
import time
import transformers
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
from io import BytesIO
from urllib.request import urlopen
import librosa
import os, json
from sys import argv
from vllm import LLM, SamplingParams
import vllm
import re
def load_model_processor(model_path):
processor = AutoProcessor.from_pretrained(model_path)
llm = LLM(
model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8,
enforce_eager=True, device = "cuda",
limit_mm_per_prompt={"audio": 5},
)
return llm, processor
model_path1 = "SeaLLMs/SeaLLMs-Audio-7B"
model1, processor1 = load_model_processor(model_path1)
def response_to_audio(audio_url, text, model=None, processor=None, temperature = 0,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048):
if text == None:
conversation = [
{"role": "user", "content": [
{"type": "audio", "audio_url": audio_url},
]},]
elif audio_url == None:
conversation = [
{"role": "user", "content": [
{"type": "text", "text": text},
]},]
else:
conversation = [
{"role": "user", "content": [
{"type": "audio", "audio_url": audio_url},
{"type": "text", "text": text},
]},]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
if ele['audio_url'] != None:
audios.append(librosa.load(
ele['audio_url'],
sr=processor.feature_extractor.sampling_rate)[0]
)
sampling_params = SamplingParams(
temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20,
stop_token_ids=[],
)
input = {
'prompt': text,
'multi_modal_data': {
'audio': [(audio, 16000) for audio in audios]
}
}
output = model.generate([input], sampling_params=sampling_params)[0]
response = output.outputs[0].text
return response
def clear_inputs():
return None, "", ""
def contains_chinese(text):
# Regular expression for Chinese characters
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]')
return bool(chinese_char_pattern.search(text))
def compare_responses(audio_url, text):
if contains_chinese(text):
return "Caution! This demo does not support Chinese!"
response1 = response_to_audio(audio_url, text, model1, processor1)
if contains_chinese(response1):
return "ERROR! Try another example!"
return response1
with gr.Blocks() as demo:
# gr.Markdown(f"Evaluate {model_path1}")
gr.HTML("""<p align="center"><img src="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/images/seallm-audio-logo.png" style="height: 80px"/><p>""")
# gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False)
gr.HTML("""<h1 align="center" id="space-title">SeaLLMs-Audio-Demo</h1>""")
# gr.Markdown(
# """\
# <center><font size=4>This WebUI is based on SeaLLMs-Audio-7B, developed by Alibaba DAMO Academy.<br>
# You can interact with the chatbot in <b>English, Chinese, Indonesian, Thai, or Vietnamese</b>.<br>
# For the input, you can input <b>audio and/or text</center>.""")
# # Links with proper formatting
# gr.Markdown(
# """<center><font size=4>
# <a href="https://huggingface.co./SeaLLMs/SeaLLMs-v3-7B-Chat">[Website]</a>
# <a href="https://huggingface.co./SeaLLMs/SeaLLMs-Audio-7B">[Model🤗]</a>
# <a href="https://github.com/DAMO-NLP-SG/SeaLLMs-Audio">[Github]</a>
# </center>""",
# )
gr.HTML(
"""<div style="text-align: center; font-size: 16px;">
This WebUI is based on <a href="https://huggingface.co./SeaLLMs/SeaLLMs-Audio-7B">SeaLLMs-Audio-7B</a>, developed by Alibaba DAMO Academy.<br>
You can interact with the chatbot in <b>English, Indonesian, Thai, or Vietnamese</b>.<br>
For the input, you can provide <b>audio and/or text</b>.
</div>"""
)
gr.HTML(
"""<div style="text-align: center; font-size: 16px;">
<a href="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/">[Website]</a>
<a href="https://huggingface.co./SeaLLMs/SeaLLMs-Audio-7B">[Model🤗]</a>
<a href="https://github.com/DAMO-NLP-SG/SeaLLMs-Audio">[Github]</a>
</div>"""
)
# gr.Markdown(insturctions)
# with gr.Row():
# with gr.Column():
# temperature = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Temperature")
# with gr.Column():
# top_p = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label="Top P")
# with gr.Column():
# repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.1, step=0.1, label="Repetition Penalty")
with gr.Row():
with gr.Column():
# mic_input = gr.Microphone(label="Record Audio", type="filepath", elem_id="mic_input")
mic_input = gr.Audio(sources = ['upload', 'microphone'], label="Record Audio", type="filepath", elem_id="mic_input")
with gr.Column():
additional_input = gr.Textbox(label="Text Input")
# Button to trigger the function
with gr.Row():
btn_submit = gr.Button("Submit")
btn_clear = gr.Button("Clear")
with gr.Row():
output_text1 = gr.Textbox(label=model_path1.split('/')[-1], interactive=False, elem_id="output_text1")
btn_submit.click(
fn=compare_responses,
inputs=[mic_input, additional_input],
outputs=[output_text1],
)
btn_clear.click(
fn=clear_inputs,
inputs=None,
outputs=[mic_input, additional_input, output_text1],
queue=False,
)
# demo.launch(
# share=False,
# inbrowser=True,
# server_port=7950,
# server_name="0.0.0.0",
# max_threads=40
# )
demo.launch(share=True)
demo.queue(default_concurrency_limit=40).launch(share=True)
|