from datetime import datetime from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_parse import LlamaParse from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI import os from dotenv import load_dotenv import gradio as gr import base64 # Load environment variables load_dotenv() # Default models selected_llm_model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1" selected_embed_model_name = "BAAI/bge-small-en-v1.5" vector_index = None # Initialize the parser parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown') file_extractor = { '.pdf': parser, '.docx': parser, '.doc': parser, '.txt': parser, '.csv': parser, '.xlsx': parser, '.pptx': parser, '.html': parser, '.jpg': parser, '.jpeg': parser, '.png': parser, '.webp': parser, '.svg': parser } # File processing function def load_files(file_path: str): try: global vector_index document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data() embed_model = HuggingFaceEmbedding(model_name=selected_embed_model_name) vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model) print(f"Parsing done for {file_path}") filename = os.path.basename(file_path) return f"File upload status: Ready to write ({filename})" except Exception as e: return f"An error occurred: {e}" # Respond function def respond(message, history): try: llm = HuggingFaceInferenceAPI( model_name=selected_llm_model_name, contextWindow=8192, maxTokens=1024, temperature=0.3, topP=0.9, frequencyPenalty=0.5, presencePenalty=0.5, token=os.getenv("TOKEN") ) query_engine = vector_index.as_query_engine(llm=llm) bot_message = query_engine.query(message) print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n") return f"{selected_llm_model_name}:\n{str(bot_message)}" except Exception as e: if str(e) == "'NoneType' object has no attribute 'as_query_engine'": return "Please upload a file." return f"An error occurred: {e}" # UI Setup with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo: gr.Markdown("# Document RAG") with gr.Row(): with gr.Column(scale=1): file_input = gr.File(file_count="single", type='filepath', label="Upload Document") btn = gr.Button("Submit", variant='primary') clear = gr.ClearButton() output = gr.Text(label='File Upload Status') with gr.Column(scale=3): gr.ChatInterface( fn=respond, chatbot=gr.Chatbot(height=500), theme="light", show_progress='full', textbox=gr.Textbox(placeholder="Ask me questions on the uploaded document!", container=False) ) btn.click(fn=load_files, inputs=[file_input], outputs=output) clear.click(lambda: [None] * 2, outputs=[file_input, output]) # Launch the demo if __name__ == "__main__": demo.launch()