browser-use-sg / src /agent /custom_agent.py
Sanjeev23oct's picture
Upload folder using huggingface_hub
f1d5e1c verified
import json
import logging
import pdb
import traceback
from typing import Any, Awaitable, Callable, Dict, Generic, List, Optional, Type, TypeVar
from PIL import Image, ImageDraw, ImageFont
import os
import base64
import io
import asyncio
import time
import platform
from browser_use.agent.prompts import SystemPrompt, AgentMessagePrompt
from browser_use.agent.service import Agent
from browser_use.agent.message_manager.utils import convert_input_messages, extract_json_from_model_output, \
save_conversation
from browser_use.agent.views import (
ActionResult,
AgentError,
AgentHistory,
AgentHistoryList,
AgentOutput,
AgentSettings,
AgentState,
AgentStepInfo,
StepMetadata,
ToolCallingMethod,
)
from browser_use.agent.gif import create_history_gif
from browser_use.browser.browser import Browser
from browser_use.browser.context import BrowserContext
from browser_use.browser.views import BrowserStateHistory
from browser_use.controller.service import Controller
from browser_use.telemetry.views import (
AgentEndTelemetryEvent,
AgentRunTelemetryEvent,
AgentStepTelemetryEvent,
)
from browser_use.utils import time_execution_async
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
BaseMessage,
HumanMessage,
AIMessage
)
from browser_use.browser.views import BrowserState, BrowserStateHistory
from browser_use.agent.prompts import PlannerPrompt
from json_repair import repair_json
from src.utils.agent_state import AgentState
from .custom_message_manager import CustomMessageManager, CustomMessageManagerSettings
from .custom_views import CustomAgentOutput, CustomAgentStepInfo, CustomAgentState
logger = logging.getLogger(__name__)
Context = TypeVar('Context')
class CustomAgent(Agent):
def __init__(
self,
task: str,
llm: BaseChatModel,
add_infos: str = "",
# Optional parameters
browser: Browser | None = None,
browser_context: BrowserContext | None = None,
controller: Controller[Context] = Controller(),
# Initial agent run parameters
sensitive_data: Optional[Dict[str, str]] = None,
initial_actions: Optional[List[Dict[str, Dict[str, Any]]]] = None,
# Cloud Callbacks
register_new_step_callback: Callable[['BrowserState', 'AgentOutput', int], Awaitable[None]] | None = None,
register_done_callback: Callable[['AgentHistoryList'], Awaitable[None]] | None = None,
register_external_agent_status_raise_error_callback: Callable[[], Awaitable[bool]] | None = None,
# Agent settings
use_vision: bool = True,
use_vision_for_planner: bool = False,
save_conversation_path: Optional[str] = None,
save_conversation_path_encoding: Optional[str] = 'utf-8',
max_failures: int = 3,
retry_delay: int = 10,
system_prompt_class: Type[SystemPrompt] = SystemPrompt,
agent_prompt_class: Type[AgentMessagePrompt] = AgentMessagePrompt,
max_input_tokens: int = 128000,
validate_output: bool = False,
message_context: Optional[str] = None,
generate_gif: bool | str = False,
available_file_paths: Optional[list[str]] = None,
include_attributes: list[str] = [
'title',
'type',
'name',
'role',
'aria-label',
'placeholder',
'value',
'alt',
'aria-expanded',
'data-date-format',
],
max_actions_per_step: int = 10,
tool_calling_method: Optional[ToolCallingMethod] = 'auto',
page_extraction_llm: Optional[BaseChatModel] = None,
planner_llm: Optional[BaseChatModel] = None,
planner_interval: int = 1, # Run planner every N steps
# Inject state
injected_agent_state: Optional[AgentState] = None,
context: Context | None = None,
):
super(CustomAgent, self).__init__(
task=task,
llm=llm,
browser=browser,
browser_context=browser_context,
controller=controller,
sensitive_data=sensitive_data,
initial_actions=initial_actions,
register_new_step_callback=register_new_step_callback,
register_done_callback=register_done_callback,
register_external_agent_status_raise_error_callback=register_external_agent_status_raise_error_callback,
use_vision=use_vision,
use_vision_for_planner=use_vision_for_planner,
save_conversation_path=save_conversation_path,
save_conversation_path_encoding=save_conversation_path_encoding,
max_failures=max_failures,
retry_delay=retry_delay,
system_prompt_class=system_prompt_class,
max_input_tokens=max_input_tokens,
validate_output=validate_output,
message_context=message_context,
generate_gif=generate_gif,
available_file_paths=available_file_paths,
include_attributes=include_attributes,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method,
page_extraction_llm=page_extraction_llm,
planner_llm=planner_llm,
planner_interval=planner_interval,
injected_agent_state=injected_agent_state,
context=context,
)
self.state = injected_agent_state or CustomAgentState()
self.add_infos = add_infos
self._message_manager = CustomMessageManager(
task=task,
system_message=self.settings.system_prompt_class(
self.available_actions,
max_actions_per_step=self.settings.max_actions_per_step,
).get_system_message(),
settings=CustomMessageManagerSettings(
max_input_tokens=self.settings.max_input_tokens,
include_attributes=self.settings.include_attributes,
message_context=self.settings.message_context,
sensitive_data=sensitive_data,
available_file_paths=self.settings.available_file_paths,
agent_prompt_class=agent_prompt_class
),
state=self.state.message_manager_state,
)
def _log_response(self, response: CustomAgentOutput) -> None:
"""Log the model's response"""
if "Success" in response.current_state.evaluation_previous_goal:
emoji = "βœ…"
elif "Failed" in response.current_state.evaluation_previous_goal:
emoji = "❌"
else:
emoji = "🀷"
logger.info(f"{emoji} Eval: {response.current_state.evaluation_previous_goal}")
logger.info(f"🧠 New Memory: {response.current_state.important_contents}")
logger.info(f"πŸ€” Thought: {response.current_state.thought}")
logger.info(f"🎯 Next Goal: {response.current_state.next_goal}")
for i, action in enumerate(response.action):
logger.info(
f"πŸ› οΈ Action {i + 1}/{len(response.action)}: {action.model_dump_json(exclude_unset=True)}"
)
def _setup_action_models(self) -> None:
"""Setup dynamic action models from controller's registry"""
# Get the dynamic action model from controller's registry
self.ActionModel = self.controller.registry.create_action_model()
# Create output model with the dynamic actions
self.AgentOutput = CustomAgentOutput.type_with_custom_actions(self.ActionModel)
def update_step_info(
self, model_output: CustomAgentOutput, step_info: CustomAgentStepInfo = None
):
"""
update step info
"""
if step_info is None:
return
step_info.step_number += 1
important_contents = model_output.current_state.important_contents
if (
important_contents
and "None" not in important_contents
and important_contents not in step_info.memory
):
step_info.memory += important_contents + "\n"
logger.info(f"🧠 All Memory: \n{step_info.memory}")
@time_execution_async("--get_next_action")
async def get_next_action(self, input_messages: list[BaseMessage]) -> AgentOutput:
"""Get next action from LLM based on current state"""
fixed_input_messages = self._convert_input_messages(input_messages)
ai_message = self.llm.invoke(fixed_input_messages)
self.message_manager._add_message_with_tokens(ai_message)
if hasattr(ai_message, "reasoning_content"):
logger.info("🀯 Start Deep Thinking: ")
logger.info(ai_message.reasoning_content)
logger.info("🀯 End Deep Thinking")
if isinstance(ai_message.content, list):
ai_content = ai_message.content[0]
else:
ai_content = ai_message.content
try:
ai_content = ai_content.replace("```json", "").replace("```", "")
ai_content = repair_json(ai_content)
parsed_json = json.loads(ai_content)
parsed: AgentOutput = self.AgentOutput(**parsed_json)
except Exception as e:
import traceback
traceback.print_exc()
logger.debug(ai_message.content)
raise ValueError('Could not parse response.')
if parsed is None:
logger.debug(ai_message.content)
raise ValueError('Could not parse response.')
# cut the number of actions to max_actions_per_step if needed
if len(parsed.action) > self.settings.max_actions_per_step:
parsed.action = parsed.action[: self.settings.max_actions_per_step]
self._log_response(parsed)
return parsed
async def _run_planner(self) -> Optional[str]:
"""Run the planner to analyze state and suggest next steps"""
# Skip planning if no planner_llm is set
if not self.settings.planner_llm:
return None
# Create planner message history using full message history
planner_messages = [
PlannerPrompt(self.controller.registry.get_prompt_description()).get_system_message(),
*self.message_manager.get_messages()[1:], # Use full message history except the first
]
if not self.settings.use_vision_for_planner and self.settings.use_vision:
last_state_message: HumanMessage = planner_messages[-1]
# remove image from last state message
new_msg = ''
if isinstance(last_state_message.content, list):
for msg in last_state_message.content:
if msg['type'] == 'text':
new_msg += msg['text']
elif msg['type'] == 'image_url':
continue
else:
new_msg = last_state_message.content
planner_messages[-1] = HumanMessage(content=new_msg)
# Get planner output
response = await self.settings.planner_llm.ainvoke(planner_messages)
plan = str(response.content)
last_state_message = self.message_manager.get_messages()[-1]
if isinstance(last_state_message, HumanMessage):
# remove image from last state message
if isinstance(last_state_message.content, list):
for msg in last_state_message.content:
if msg['type'] == 'text':
msg['text'] += f"\nPlanning Agent outputs plans:\n {plan}\n"
else:
last_state_message.content += f"\nPlanning Agent outputs plans:\n {plan}\n "
try:
plan_json = json.loads(plan.replace("```json", "").replace("```", ""))
logger.info(f'πŸ“‹ Plans:\n{json.dumps(plan_json, indent=4)}')
if hasattr(response, "reasoning_content"):
logger.info("🀯 Start Planning Deep Thinking: ")
logger.info(response.reasoning_content)
logger.info("🀯 End Planning Deep Thinking")
except json.JSONDecodeError:
logger.info(f'πŸ“‹ Plans:\n{plan}')
except Exception as e:
logger.debug(f'Error parsing planning analysis: {e}')
logger.info(f'πŸ“‹ Plans: {plan}')
return plan
@time_execution_async("--step")
async def step(self, step_info: Optional[CustomAgentStepInfo] = None) -> None:
"""Execute one step of the task"""
logger.info(f"\nπŸ“ Step {self.state.n_steps}")
state = None
model_output = None
result: list[ActionResult] = []
step_start_time = time.time()
tokens = 0
try:
state = await self.browser_context.get_state()
await self._raise_if_stopped_or_paused()
self.message_manager.add_state_message(state, self.state.last_action, self.state.last_result, step_info,
self.settings.use_vision)
# Run planner at specified intervals if planner is configured
if self.settings.planner_llm and self.state.n_steps % self.settings.planner_interval == 0:
await self._run_planner()
input_messages = self.message_manager.get_messages()
tokens = self._message_manager.state.history.current_tokens
try:
model_output = await self.get_next_action(input_messages)
self.update_step_info(model_output, step_info)
self.state.n_steps += 1
if self.register_new_step_callback:
await self.register_new_step_callback(state, model_output, self.state.n_steps)
if self.settings.save_conversation_path:
target = self.settings.save_conversation_path + f'_{self.state.n_steps}.txt'
save_conversation(input_messages, model_output, target,
self.settings.save_conversation_path_encoding)
if self.model_name != "deepseek-reasoner":
# remove prev message
self.message_manager._remove_state_message_by_index(-1)
await self._raise_if_stopped_or_paused()
except Exception as e:
# model call failed, remove last state message from history
self.message_manager._remove_state_message_by_index(-1)
raise e
result: list[ActionResult] = await self.multi_act(model_output.action)
for ret_ in result:
if ret_.extracted_content and "Extracted page" in ret_.extracted_content:
# record every extracted page
if ret_.extracted_content[:100] not in self.state.extracted_content:
self.state.extracted_content += ret_.extracted_content
self.state.last_result = result
self.state.last_action = model_output.action
if len(result) > 0 and result[-1].is_done:
if not self.state.extracted_content:
self.state.extracted_content = step_info.memory
result[-1].extracted_content = self.state.extracted_content
logger.info(f"πŸ“„ Result: {result[-1].extracted_content}")
self.state.consecutive_failures = 0
except InterruptedError:
logger.debug('Agent paused')
self.state.last_result = [
ActionResult(
error='The agent was paused - now continuing actions might need to be repeated',
include_in_memory=True
)
]
return
except Exception as e:
result = await self._handle_step_error(e)
self.state.last_result = result
finally:
step_end_time = time.time()
actions = [a.model_dump(exclude_unset=True) for a in model_output.action] if model_output else []
self.telemetry.capture(
AgentStepTelemetryEvent(
agent_id=self.state.agent_id,
step=self.state.n_steps,
actions=actions,
consecutive_failures=self.state.consecutive_failures,
step_error=[r.error for r in result if r.error] if result else ['No result'],
)
)
if not result:
return
if state:
metadata = StepMetadata(
step_number=self.state.n_steps,
step_start_time=step_start_time,
step_end_time=step_end_time,
input_tokens=tokens,
)
self._make_history_item(model_output, state, result, metadata)
async def run(self, max_steps: int = 100) -> AgentHistoryList:
"""Execute the task with maximum number of steps"""
try:
self._log_agent_run()
# Execute initial actions if provided
if self.initial_actions:
result = await self.multi_act(self.initial_actions, check_for_new_elements=False)
self.state.last_result = result
step_info = CustomAgentStepInfo(
task=self.task,
add_infos=self.add_infos,
step_number=1,
max_steps=max_steps,
memory="",
)
for step in range(max_steps):
# Check if we should stop due to too many failures
if self.state.consecutive_failures >= self.settings.max_failures:
logger.error(f'❌ Stopping due to {self.settings.max_failures} consecutive failures')
break
# Check control flags before each step
if self.state.stopped:
logger.info('Agent stopped')
break
while self.state.paused:
await asyncio.sleep(0.2) # Small delay to prevent CPU spinning
if self.state.stopped: # Allow stopping while paused
break
await self.step(step_info)
if self.state.history.is_done():
if self.settings.validate_output and step < max_steps - 1:
if not await self._validate_output():
continue
await self.log_completion()
break
else:
logger.info("❌ Failed to complete task in maximum steps")
if not self.state.extracted_content:
self.state.history.history[-1].result[-1].extracted_content = step_info.memory
else:
self.state.history.history[-1].result[-1].extracted_content = self.state.extracted_content
return self.state.history
finally:
self.telemetry.capture(
AgentEndTelemetryEvent(
agent_id=self.state.agent_id,
is_done=self.state.history.is_done(),
success=self.state.history.is_successful(),
steps=self.state.n_steps,
max_steps_reached=self.state.n_steps >= max_steps,
errors=self.state.history.errors(),
total_input_tokens=self.state.history.total_input_tokens(),
total_duration_seconds=self.state.history.total_duration_seconds(),
)
)
if not self.injected_browser_context:
await self.browser_context.close()
if not self.injected_browser and self.browser:
await self.browser.close()
if self.settings.generate_gif:
output_path: str = 'agent_history.gif'
if isinstance(self.settings.generate_gif, str):
output_path = self.settings.generate_gif
create_history_gif(task=self.task, history=self.state.history, output_path=output_path)