Spaces:
Running
Running
File size: 48,360 Bytes
f1d5e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 |
import pdb
import logging
from dotenv import load_dotenv
load_dotenv()
import os
import glob
import asyncio
import argparse
import os
logger = logging.getLogger(__name__)
import gradio as gr
import inspect
from functools import wraps
from browser_use.agent.service import Agent
from playwright.async_api import async_playwright
from browser_use.browser.browser import Browser, BrowserConfig
from browser_use.browser.context import (
BrowserContextConfig,
BrowserContextWindowSize,
)
from langchain_ollama import ChatOllama
from playwright.async_api import async_playwright
from src.utils.agent_state import AgentState
from src.utils import utils
from src.agent.custom_agent import CustomAgent
from src.browser.custom_browser import CustomBrowser
from src.agent.custom_prompts import CustomSystemPrompt, CustomAgentMessagePrompt
from src.browser.custom_context import BrowserContextConfig, CustomBrowserContext
from src.controller.custom_controller import CustomController
from gradio.themes import Citrus, Default, Glass, Monochrome, Ocean, Origin, Soft, Base
from src.utils.utils import update_model_dropdown, get_latest_files, capture_screenshot, MissingAPIKeyError
from src.utils import utils
# Global variables for persistence
_global_browser = None
_global_browser_context = None
_global_agent = None
# Create the global agent state instance
_global_agent_state = AgentState()
# webui config
webui_config_manager = utils.ConfigManager()
def scan_and_register_components(blocks):
"""扫描一个 Blocks 对象并注册其中的所有交互式组件,但不包括按钮"""
global webui_config_manager
def traverse_blocks(block, prefix=""):
registered = 0
# 处理 Blocks 自身的组件
if hasattr(block, "children"):
for i, child in enumerate(block.children):
if isinstance(child, gr.components.Component):
# 排除按钮 (Button) 组件
if getattr(child, "interactive", False) and not isinstance(child, gr.Button):
name = f"{prefix}component_{i}"
if hasattr(child, "label") and child.label:
# 使用标签作为名称的一部分
label = child.label
name = f"{prefix}{label}"
logger.debug(f"Registering component: {name}")
webui_config_manager.register_component(name, child)
registered += 1
elif hasattr(child, "children"):
# 递归处理嵌套的 Blocks
new_prefix = f"{prefix}block_{i}_"
registered += traverse_blocks(child, new_prefix)
return registered
total = traverse_blocks(blocks)
logger.info(f"Total registered components: {total}")
def save_current_config():
return webui_config_manager.save_current_config()
def update_ui_from_config(config_file):
return webui_config_manager.update_ui_from_config(config_file)
def resolve_sensitive_env_variables(text):
"""
Replace environment variable placeholders ($SENSITIVE_*) with their values.
Only replaces variables that start with SENSITIVE_.
"""
if not text:
return text
import re
# Find all $SENSITIVE_* patterns
env_vars = re.findall(r'\$SENSITIVE_[A-Za-z0-9_]*', text)
result = text
for var in env_vars:
# Remove the $ prefix to get the actual environment variable name
env_name = var[1:] # removes the $
env_value = os.getenv(env_name)
if env_value is not None:
# Replace $SENSITIVE_VAR_NAME with its value
result = result.replace(var, env_value)
return result
async def stop_agent():
"""Request the agent to stop and update UI with enhanced feedback"""
global _global_agent
try:
if _global_agent is not None:
# Request stop
_global_agent.stop()
# Update UI immediately
message = "Stop requested - the agent will halt at the next safe point"
logger.info(f"🛑 {message}")
# Return UI updates
return (
gr.update(value="Stopping...", interactive=False), # stop_button
gr.update(interactive=False), # run_button
)
except Exception as e:
error_msg = f"Error during stop: {str(e)}"
logger.error(error_msg)
return (
gr.update(value="Stop", interactive=True),
gr.update(interactive=True)
)
async def stop_research_agent():
"""Request the agent to stop and update UI with enhanced feedback"""
global _global_agent_state
try:
# Request stop
_global_agent_state.request_stop()
# Update UI immediately
message = "Stop requested - the agent will halt at the next safe point"
logger.info(f"🛑 {message}")
# Return UI updates
return ( # errors_output
gr.update(value="Stopping...", interactive=False), # stop_button
gr.update(interactive=False), # run_button
)
except Exception as e:
error_msg = f"Error during stop: {str(e)}"
logger.error(error_msg)
return (
gr.update(value="Stop", interactive=True),
gr.update(interactive=True)
)
async def run_browser_agent(
agent_type,
llm_provider,
llm_model_name,
llm_num_ctx,
llm_temperature,
llm_base_url,
llm_api_key,
use_own_browser,
keep_browser_open,
headless,
disable_security,
window_w,
window_h,
save_recording_path,
save_agent_history_path,
save_trace_path,
enable_recording,
task,
add_infos,
max_steps,
use_vision,
max_actions_per_step,
tool_calling_method,
chrome_cdp,
max_input_tokens
):
try:
# Disable recording if the checkbox is unchecked
if not enable_recording:
save_recording_path = None
# Ensure the recording directory exists if recording is enabled
if save_recording_path:
os.makedirs(save_recording_path, exist_ok=True)
# Get the list of existing videos before the agent runs
existing_videos = set()
if save_recording_path:
existing_videos = set(
glob.glob(os.path.join(save_recording_path, "*.[mM][pP]4"))
+ glob.glob(os.path.join(save_recording_path, "*.[wW][eE][bB][mM]"))
)
task = resolve_sensitive_env_variables(task)
# Run the agent
llm = utils.get_llm_model(
provider=llm_provider,
model_name=llm_model_name,
num_ctx=llm_num_ctx,
temperature=llm_temperature,
base_url=llm_base_url,
api_key=llm_api_key,
)
if agent_type == "org":
final_result, errors, model_actions, model_thoughts, trace_file, history_file = await run_org_agent(
llm=llm,
use_own_browser=use_own_browser,
keep_browser_open=keep_browser_open,
headless=headless,
disable_security=disable_security,
window_w=window_w,
window_h=window_h,
save_recording_path=save_recording_path,
save_agent_history_path=save_agent_history_path,
save_trace_path=save_trace_path,
task=task,
max_steps=max_steps,
use_vision=use_vision,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method,
chrome_cdp=chrome_cdp,
max_input_tokens=max_input_tokens
)
elif agent_type == "custom":
final_result, errors, model_actions, model_thoughts, trace_file, history_file = await run_custom_agent(
llm=llm,
use_own_browser=use_own_browser,
keep_browser_open=keep_browser_open,
headless=headless,
disable_security=disable_security,
window_w=window_w,
window_h=window_h,
save_recording_path=save_recording_path,
save_agent_history_path=save_agent_history_path,
save_trace_path=save_trace_path,
task=task,
add_infos=add_infos,
max_steps=max_steps,
use_vision=use_vision,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method,
chrome_cdp=chrome_cdp,
max_input_tokens=max_input_tokens
)
else:
raise ValueError(f"Invalid agent type: {agent_type}")
# Get the list of videos after the agent runs (if recording is enabled)
# latest_video = None
# if save_recording_path:
# new_videos = set(
# glob.glob(os.path.join(save_recording_path, "*.[mM][pP]4"))
# + glob.glob(os.path.join(save_recording_path, "*.[wW][eE][bB][mM]"))
# )
# if new_videos - existing_videos:
# latest_video = list(new_videos - existing_videos)[0] # Get the first new video
gif_path = os.path.join(os.path.dirname(__file__), "agent_history.gif")
return (
final_result,
errors,
model_actions,
model_thoughts,
gif_path,
trace_file,
history_file,
gr.update(value="Stop", interactive=True), # Re-enable stop button
gr.update(interactive=True) # Re-enable run button
)
except MissingAPIKeyError as e:
logger.error(str(e))
raise gr.Error(str(e), print_exception=False)
except Exception as e:
import traceback
traceback.print_exc()
errors = str(e) + "\n" + traceback.format_exc()
return (
'', # final_result
errors, # errors
'', # model_actions
'', # model_thoughts
None, # latest_video
None, # history_file
None, # trace_file
gr.update(value="Stop", interactive=True), # Re-enable stop button
gr.update(interactive=True) # Re-enable run button
)
async def run_org_agent(
llm,
use_own_browser,
keep_browser_open,
headless,
disable_security,
window_w,
window_h,
save_recording_path,
save_agent_history_path,
save_trace_path,
task,
max_steps,
use_vision,
max_actions_per_step,
tool_calling_method,
chrome_cdp,
max_input_tokens
):
try:
global _global_browser, _global_browser_context, _global_agent
extra_chromium_args = ["--accept_downloads=True", f"--window-size={window_w},{window_h}"]
cdp_url = chrome_cdp
if use_own_browser:
cdp_url = os.getenv("CHROME_CDP", chrome_cdp)
chrome_path = os.getenv("CHROME_PATH", None)
if chrome_path == "":
chrome_path = None
chrome_user_data = os.getenv("CHROME_USER_DATA", None)
if chrome_user_data:
extra_chromium_args += [f"--user-data-dir={chrome_user_data}"]
else:
chrome_path = None
if _global_browser is None:
_global_browser = Browser(
config=BrowserConfig(
headless=headless,
cdp_url=cdp_url,
disable_security=disable_security,
chrome_instance_path=chrome_path,
extra_chromium_args=extra_chromium_args,
)
)
if _global_browser_context is None:
_global_browser_context = await _global_browser.new_context(
config=BrowserContextConfig(
trace_path=save_trace_path if save_trace_path else None,
save_recording_path=save_recording_path if save_recording_path else None,
save_downloads_path="./tmp/downloads",
no_viewport=False,
browser_window_size=BrowserContextWindowSize(
width=window_w, height=window_h
),
)
)
if _global_agent is None:
_global_agent = Agent(
task=task,
llm=llm,
use_vision=use_vision,
browser=_global_browser,
browser_context=_global_browser_context,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method,
max_input_tokens=max_input_tokens,
generate_gif=True
)
history = await _global_agent.run(max_steps=max_steps)
history_file = os.path.join(save_agent_history_path, f"{_global_agent.state.agent_id}.json")
_global_agent.save_history(history_file)
final_result = history.final_result()
errors = history.errors()
model_actions = history.model_actions()
model_thoughts = history.model_thoughts()
trace_file = get_latest_files(save_trace_path)
return final_result, errors, model_actions, model_thoughts, trace_file.get('.zip'), history_file
except Exception as e:
import traceback
traceback.print_exc()
errors = str(e) + "\n" + traceback.format_exc()
return '', errors, '', '', None, None
finally:
_global_agent = None
# Handle cleanup based on persistence configuration
if not keep_browser_open:
if _global_browser_context:
await _global_browser_context.close()
_global_browser_context = None
if _global_browser:
await _global_browser.close()
_global_browser = None
async def run_custom_agent(
llm,
use_own_browser,
keep_browser_open,
headless,
disable_security,
window_w,
window_h,
save_recording_path,
save_agent_history_path,
save_trace_path,
task,
add_infos,
max_steps,
use_vision,
max_actions_per_step,
tool_calling_method,
chrome_cdp,
max_input_tokens
):
try:
global _global_browser, _global_browser_context, _global_agent
extra_chromium_args = ["--accept_downloads=True", f"--window-size={window_w},{window_h}"]
cdp_url = chrome_cdp
if use_own_browser:
cdp_url = os.getenv("CHROME_CDP", chrome_cdp)
chrome_path = os.getenv("CHROME_PATH", None)
if chrome_path == "":
chrome_path = None
chrome_user_data = os.getenv("CHROME_USER_DATA", None)
if chrome_user_data:
extra_chromium_args += [f"--user-data-dir={chrome_user_data}"]
else:
chrome_path = None
controller = CustomController()
# Initialize global browser if needed
# if chrome_cdp not empty string nor None
if (_global_browser is None) or (cdp_url and cdp_url != "" and cdp_url != None):
_global_browser = CustomBrowser(
config=BrowserConfig(
headless=headless,
disable_security=disable_security,
cdp_url=cdp_url,
chrome_instance_path=chrome_path,
extra_chromium_args=extra_chromium_args,
)
)
if _global_browser_context is None or (chrome_cdp and cdp_url != "" and cdp_url != None):
_global_browser_context = await _global_browser.new_context(
config=BrowserContextConfig(
trace_path=save_trace_path if save_trace_path else None,
save_recording_path=save_recording_path if save_recording_path else None,
no_viewport=False,
save_downloads_path="./tmp/downloads",
browser_window_size=BrowserContextWindowSize(
width=window_w, height=window_h
),
)
)
# Create and run agent
if _global_agent is None:
_global_agent = CustomAgent(
task=task,
add_infos=add_infos,
use_vision=use_vision,
llm=llm,
browser=_global_browser,
browser_context=_global_browser_context,
controller=controller,
system_prompt_class=CustomSystemPrompt,
agent_prompt_class=CustomAgentMessagePrompt,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method,
max_input_tokens=max_input_tokens,
generate_gif=True
)
history = await _global_agent.run(max_steps=max_steps)
history_file = os.path.join(save_agent_history_path, f"{_global_agent.state.agent_id}.json")
_global_agent.save_history(history_file)
final_result = history.final_result()
errors = history.errors()
model_actions = history.model_actions()
model_thoughts = history.model_thoughts()
trace_file = get_latest_files(save_trace_path)
return final_result, errors, model_actions, model_thoughts, trace_file.get('.zip'), history_file
except Exception as e:
import traceback
traceback.print_exc()
errors = str(e) + "\n" + traceback.format_exc()
return '', errors, '', '', None, None
finally:
_global_agent = None
# Handle cleanup based on persistence configuration
if not keep_browser_open:
if _global_browser_context:
await _global_browser_context.close()
_global_browser_context = None
if _global_browser:
await _global_browser.close()
_global_browser = None
async def run_with_stream(
agent_type,
llm_provider,
llm_model_name,
llm_num_ctx,
llm_temperature,
llm_base_url,
llm_api_key,
use_own_browser,
keep_browser_open,
headless,
disable_security,
window_w,
window_h,
save_recording_path,
save_agent_history_path,
save_trace_path,
enable_recording,
task,
add_infos,
max_steps,
use_vision,
max_actions_per_step,
tool_calling_method,
chrome_cdp,
max_input_tokens
):
global _global_agent
stream_vw = 80
stream_vh = int(80 * window_h // window_w)
if not headless:
result = await run_browser_agent(
agent_type=agent_type,
llm_provider=llm_provider,
llm_model_name=llm_model_name,
llm_num_ctx=llm_num_ctx,
llm_temperature=llm_temperature,
llm_base_url=llm_base_url,
llm_api_key=llm_api_key,
use_own_browser=use_own_browser,
keep_browser_open=keep_browser_open,
headless=headless,
disable_security=disable_security,
window_w=window_w,
window_h=window_h,
save_recording_path=save_recording_path,
save_agent_history_path=save_agent_history_path,
save_trace_path=save_trace_path,
enable_recording=enable_recording,
task=task,
add_infos=add_infos,
max_steps=max_steps,
use_vision=use_vision,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method,
chrome_cdp=chrome_cdp,
max_input_tokens=max_input_tokens
)
# Add HTML content at the start of the result array
yield [gr.update(visible=False)] + list(result)
else:
try:
# Run the browser agent in the background
agent_task = asyncio.create_task(
run_browser_agent(
agent_type=agent_type,
llm_provider=llm_provider,
llm_model_name=llm_model_name,
llm_num_ctx=llm_num_ctx,
llm_temperature=llm_temperature,
llm_base_url=llm_base_url,
llm_api_key=llm_api_key,
use_own_browser=use_own_browser,
keep_browser_open=keep_browser_open,
headless=headless,
disable_security=disable_security,
window_w=window_w,
window_h=window_h,
save_recording_path=save_recording_path,
save_agent_history_path=save_agent_history_path,
save_trace_path=save_trace_path,
enable_recording=enable_recording,
task=task,
add_infos=add_infos,
max_steps=max_steps,
use_vision=use_vision,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method,
chrome_cdp=chrome_cdp,
max_input_tokens=max_input_tokens
)
)
# Initialize values for streaming
html_content = f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Using browser...</h1>"
final_result = errors = model_actions = model_thoughts = ""
recording_gif = trace = history_file = None
# Periodically update the stream while the agent task is running
while not agent_task.done():
try:
encoded_screenshot = await capture_screenshot(_global_browser_context)
if encoded_screenshot is not None:
html_content = f'<img src="data:image/jpeg;base64,{encoded_screenshot}" style="width:{stream_vw}vw; height:{stream_vh}vh ; border:1px solid #ccc;">'
else:
html_content = f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Waiting for browser session...</h1>"
except Exception as e:
html_content = f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Waiting for browser session...</h1>"
if _global_agent and _global_agent.state.stopped:
yield [
gr.HTML(value=html_content, visible=True),
final_result,
errors,
model_actions,
model_thoughts,
recording_gif,
trace,
history_file,
gr.update(value="Stopping...", interactive=False), # stop_button
gr.update(interactive=False), # run_button
]
break
else:
yield [
gr.HTML(value=html_content, visible=True),
final_result,
errors,
model_actions,
model_thoughts,
recording_gif,
trace,
history_file,
gr.update(), # Re-enable stop button
gr.update() # Re-enable run button
]
await asyncio.sleep(0.1)
# Once the agent task completes, get the results
try:
result = await agent_task
final_result, errors, model_actions, model_thoughts, recording_gif, trace, history_file, stop_button, run_button = result
except gr.Error:
final_result = ""
model_actions = ""
model_thoughts = ""
recording_gif = trace = history_file = None
except Exception as e:
errors = f"Agent error: {str(e)}"
yield [
gr.HTML(value=html_content, visible=True),
final_result,
errors,
model_actions,
model_thoughts,
recording_gif,
trace,
history_file,
stop_button,
run_button
]
except Exception as e:
import traceback
yield [
gr.HTML(
value=f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Waiting for browser session...</h1>",
visible=True),
"",
f"Error: {str(e)}\n{traceback.format_exc()}",
"",
"",
None,
None,
None,
gr.update(value="Stop", interactive=True), # Re-enable stop button
gr.update(interactive=True) # Re-enable run button
]
# Define the theme map globally
theme_map = {
"Default": Default(),
"Soft": Soft(),
"Monochrome": Monochrome(),
"Glass": Glass(),
"Origin": Origin(),
"Citrus": Citrus(),
"Ocean": Ocean(),
"Base": Base()
}
async def close_global_browser():
global _global_browser, _global_browser_context
if _global_browser_context:
await _global_browser_context.close()
_global_browser_context = None
if _global_browser:
await _global_browser.close()
_global_browser = None
async def run_deep_search(research_task, max_search_iteration_input, max_query_per_iter_input, llm_provider,
llm_model_name, llm_num_ctx, llm_temperature, llm_base_url, llm_api_key, use_vision,
use_own_browser, headless, chrome_cdp):
from src.utils.deep_research import deep_research
global _global_agent_state
# Clear any previous stop request
_global_agent_state.clear_stop()
llm = utils.get_llm_model(
provider=llm_provider,
model_name=llm_model_name,
num_ctx=llm_num_ctx,
temperature=llm_temperature,
base_url=llm_base_url,
api_key=llm_api_key,
)
markdown_content, file_path = await deep_research(research_task, llm, _global_agent_state,
max_search_iterations=max_search_iteration_input,
max_query_num=max_query_per_iter_input,
use_vision=use_vision,
headless=headless,
use_own_browser=use_own_browser,
chrome_cdp=chrome_cdp
)
return markdown_content, file_path, gr.update(value="Stop", interactive=True), gr.update(interactive=True)
def create_ui(theme_name="Ocean"):
css = """
.gradio-container {
width: 60vw !important;
max-width: 60% !important;
margin-left: auto !important;
margin-right: auto !important;
padding-top: 20px !important;
}
.header-text {
text-align: center;
margin-bottom: 30px;
}
.theme-section {
margin-bottom: 20px;
padding: 15px;
border-radius: 10px;
}
"""
with gr.Blocks(
title="Browser Use WebUI", theme=theme_map[theme_name], css=css
) as demo:
with gr.Row():
gr.Markdown(
"""
# 🌐 Browser Use WebUI
### Control your browser with AI assistance
""",
elem_classes=["header-text"],
)
with gr.Tabs() as tabs:
with gr.TabItem("⚙️ Agent Settings", id=1):
with gr.Group():
agent_type = gr.Radio(
["org", "custom"],
label="Agent Type",
value="custom",
info="Select the type of agent to use",
interactive=True
)
with gr.Column():
max_steps = gr.Slider(
minimum=1,
maximum=200,
value=100,
step=1,
label="Max Run Steps",
info="Maximum number of steps the agent will take",
interactive=True
)
max_actions_per_step = gr.Slider(
minimum=1,
maximum=100,
value=10,
step=1,
label="Max Actions per Step",
info="Maximum number of actions the agent will take per step",
interactive=True
)
with gr.Column():
use_vision = gr.Checkbox(
label="Use Vision",
value=True,
info="Enable visual processing capabilities",
interactive=True
)
max_input_tokens = gr.Number(
label="Max Input Tokens",
value=128000,
precision=0,
interactive=True
)
tool_calling_method = gr.Dropdown(
label="Tool Calling Method",
value="auto",
interactive=True,
allow_custom_value=True, # Allow users to input custom model names
choices=["auto", "json_schema", "function_calling"],
info="Tool Calls Funtion Name",
visible=False
)
with gr.TabItem("🔧 LLM Settings", id=2):
with gr.Group():
llm_provider = gr.Dropdown(
choices=[provider for provider, model in utils.model_names.items()],
label="LLM Provider",
value="openai",
info="Select your preferred language model provider",
interactive=True
)
llm_model_name = gr.Dropdown(
label="Model Name",
choices=utils.model_names['openai'],
value="gpt-4o",
interactive=True,
allow_custom_value=True, # Allow users to input custom model names
info="Select a model in the dropdown options or directly type a custom model name"
)
ollama_num_ctx = gr.Slider(
minimum=2 ** 8,
maximum=2 ** 16,
value=16000,
step=1,
label="Ollama Context Length",
info="Controls max context length model needs to handle (less = faster)",
visible=False,
interactive=True
)
llm_temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.6,
step=0.1,
label="Temperature",
info="Controls randomness in model outputs",
interactive=True
)
with gr.Row():
llm_base_url = gr.Textbox(
label="Base URL",
value="",
info="API endpoint URL (if required)"
)
llm_api_key = gr.Textbox(
label="API Key",
type="password",
value="",
info="Your API key (leave blank to use .env)"
)
# Change event to update context length slider
def update_llm_num_ctx_visibility(llm_provider):
return gr.update(visible=llm_provider == "ollama")
# Bind the change event of llm_provider to update the visibility of context length slider
llm_provider.change(
fn=update_llm_num_ctx_visibility,
inputs=llm_provider,
outputs=ollama_num_ctx
)
with gr.TabItem("🌐 Browser Settings", id=3):
with gr.Group():
with gr.Row():
use_own_browser = gr.Checkbox(
label="Use Own Browser",
value=False,
info="Use your existing browser instance",
interactive=True
)
keep_browser_open = gr.Checkbox(
label="Keep Browser Open",
value=False,
info="Keep Browser Open between Tasks",
interactive=True
)
headless = gr.Checkbox(
label="Headless Mode",
value=False,
info="Run browser without GUI",
interactive=True
)
disable_security = gr.Checkbox(
label="Disable Security",
value=True,
info="Disable browser security features",
interactive=True
)
enable_recording = gr.Checkbox(
label="Enable Recording",
value=True,
info="Enable saving browser recordings",
interactive=True
)
with gr.Row():
window_w = gr.Number(
label="Window Width",
value=1280,
info="Browser window width",
interactive=True
)
window_h = gr.Number(
label="Window Height",
value=1100,
info="Browser window height",
interactive=True
)
chrome_cdp = gr.Textbox(
label="CDP URL",
placeholder="http://localhost:9222",
value="",
info="CDP for google remote debugging",
interactive=True, # Allow editing only if recording is enabled
)
save_recording_path = gr.Textbox(
label="Recording Path",
placeholder="e.g. ./tmp/record_videos",
value="./tmp/record_videos",
info="Path to save browser recordings",
interactive=True, # Allow editing only if recording is enabled
)
save_trace_path = gr.Textbox(
label="Trace Path",
placeholder="e.g. ./tmp/traces",
value="./tmp/traces",
info="Path to save Agent traces",
interactive=True,
)
save_agent_history_path = gr.Textbox(
label="Agent History Save Path",
placeholder="e.g., ./tmp/agent_history",
value="./tmp/agent_history",
info="Specify the directory where agent history should be saved.",
interactive=True,
)
with gr.TabItem("🤖 Run Agent", id=4):
task = gr.Textbox(
label="Task Description",
lines=4,
placeholder="Enter your task here...",
value="go to google.com and type 'OpenAI' click search and give me the first url",
info="Describe what you want the agent to do",
interactive=True
)
add_infos = gr.Textbox(
label="Additional Information",
lines=3,
placeholder="Add any helpful context or instructions...",
info="Optional hints to help the LLM complete the task",
value="",
interactive=True
)
with gr.Row():
run_button = gr.Button("▶️ Run Agent", variant="primary", scale=2)
stop_button = gr.Button("⏹️ Stop", variant="stop", scale=1)
with gr.Row():
browser_view = gr.HTML(
value="<h1 style='width:80vw; height:50vh'>Waiting for browser session...</h1>",
label="Live Browser View",
visible=False
)
gr.Markdown("### Results")
with gr.Row():
with gr.Column():
final_result_output = gr.Textbox(
label="Final Result", lines=3, show_label=True
)
with gr.Column():
errors_output = gr.Textbox(
label="Errors", lines=3, show_label=True
)
with gr.Row():
with gr.Column():
model_actions_output = gr.Textbox(
label="Model Actions", lines=3, show_label=True, visible=False
)
with gr.Column():
model_thoughts_output = gr.Textbox(
label="Model Thoughts", lines=3, show_label=True, visible=False
)
recording_gif = gr.Image(label="Result GIF", format="gif")
trace_file = gr.File(label="Trace File")
agent_history_file = gr.File(label="Agent History")
with gr.TabItem("🧐 Deep Research", id=5):
research_task_input = gr.Textbox(label="Research Task", lines=5,
value="Compose a report on the use of Reinforcement Learning for training Large Language Models, encompassing its origins, current advancements, and future prospects, substantiated with examples of relevant models and techniques. The report should reflect original insights and analysis, moving beyond mere summarization of existing literature.",
interactive=True)
with gr.Row():
max_search_iteration_input = gr.Number(label="Max Search Iteration", value=3,
precision=0,
interactive=True) # precision=0 确保是整数
max_query_per_iter_input = gr.Number(label="Max Query per Iteration", value=1,
precision=0,
interactive=True) # precision=0 确保是整数
with gr.Row():
research_button = gr.Button("▶️ Run Deep Research", variant="primary", scale=2)
stop_research_button = gr.Button("⏹ Stop", variant="stop", scale=1)
markdown_output_display = gr.Markdown(label="Research Report")
markdown_download = gr.File(label="Download Research Report")
# Bind the stop button click event after errors_output is defined
stop_button.click(
fn=stop_agent,
inputs=[],
outputs=[stop_button, run_button],
)
# Run button click handler
run_button.click(
fn=run_with_stream,
inputs=[
agent_type, llm_provider, llm_model_name, ollama_num_ctx, llm_temperature, llm_base_url,
llm_api_key,
use_own_browser, keep_browser_open, headless, disable_security, window_w, window_h,
save_recording_path, save_agent_history_path, save_trace_path, # Include the new path
enable_recording, task, add_infos, max_steps, use_vision, max_actions_per_step,
tool_calling_method, chrome_cdp, max_input_tokens
],
outputs=[
browser_view, # Browser view
final_result_output, # Final result
errors_output, # Errors
model_actions_output, # Model actions
model_thoughts_output, # Model thoughts
recording_gif, # Latest recording
trace_file, # Trace file
agent_history_file, # Agent history file
stop_button, # Stop button
run_button # Run button
],
)
# Run Deep Research
research_button.click(
fn=run_deep_search,
inputs=[research_task_input, max_search_iteration_input, max_query_per_iter_input, llm_provider,
llm_model_name, ollama_num_ctx, llm_temperature, llm_base_url, llm_api_key, use_vision,
use_own_browser, headless, chrome_cdp],
outputs=[markdown_output_display, markdown_download, stop_research_button, research_button]
)
# Bind the stop button click event after errors_output is defined
stop_research_button.click(
fn=stop_research_agent,
inputs=[],
outputs=[stop_research_button, research_button],
)
with gr.TabItem("🎥 Recordings", id=7, visible=True):
def list_recordings(save_recording_path):
if not os.path.exists(save_recording_path):
return []
# Get all video files
recordings = glob.glob(os.path.join(save_recording_path, "*.[mM][pP]4")) + glob.glob(
os.path.join(save_recording_path, "*.[wW][eE][bB][mM]"))
# Sort recordings by creation time (oldest first)
recordings.sort(key=os.path.getctime)
# Add numbering to the recordings
numbered_recordings = []
for idx, recording in enumerate(recordings, start=1):
filename = os.path.basename(recording)
numbered_recordings.append((recording, f"{idx}. {filename}"))
return numbered_recordings
recordings_gallery = gr.Gallery(
label="Recordings",
columns=3,
height="auto",
object_fit="contain"
)
refresh_button = gr.Button("🔄 Refresh Recordings", variant="secondary")
refresh_button.click(
fn=list_recordings,
inputs=save_recording_path,
outputs=recordings_gallery
)
with gr.TabItem("📁 UI Configuration", id=8):
config_file_input = gr.File(
label="Load UI Settings from Config File",
file_types=[".json"],
interactive=True
)
with gr.Row():
load_config_button = gr.Button("Load Config", variant="primary")
save_config_button = gr.Button("Save UI Settings", variant="primary")
config_status = gr.Textbox(
label="Status",
lines=2,
interactive=False
)
save_config_button.click(
fn=save_current_config,
inputs=[], # 不需要输入参数
outputs=[config_status]
)
# Attach the callback to the LLM provider dropdown
llm_provider.change(
lambda provider, api_key, base_url: update_model_dropdown(provider, api_key, base_url),
inputs=[llm_provider, llm_api_key, llm_base_url],
outputs=llm_model_name
)
# Add this after defining the components
enable_recording.change(
lambda enabled: gr.update(interactive=enabled),
inputs=enable_recording,
outputs=save_recording_path
)
use_own_browser.change(fn=close_global_browser)
keep_browser_open.change(fn=close_global_browser)
scan_and_register_components(demo)
global webui_config_manager
all_components = webui_config_manager.get_all_components()
load_config_button.click(
fn=update_ui_from_config,
inputs=[config_file_input],
outputs=all_components + [config_status]
)
return demo
def main():
parser = argparse.ArgumentParser(description="Gradio UI for Browser Agent")
parser.add_argument("--ip", type=str, default="127.0.0.1", help="IP address to bind to")
parser.add_argument("--port", type=int, default=7788, help="Port to listen on")
parser.add_argument("--theme", type=str, default="Ocean", choices=theme_map.keys(), help="Theme to use for the UI")
args = parser.parse_args()
demo = create_ui(theme_name=args.theme)
demo.launch(server_name="0.0.0.0",share=True, server_port=int(os.environ.get("PORT", 80)))
if __name__ == '__main__':
main()
|