Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Copyright (c) XiMing Xing. All rights reserved. | |
# Author: XiMing Xing | |
# Description: | |
from collections import namedtuple | |
import warnings | |
from typing import Callable, Any, Optional, Tuple, List | |
import torch | |
from torch import nn, Tensor | |
import torch.nn.functional as F | |
from torch.utils.model_zoo import load_url as load_state_dict_from_url | |
__all__ = ['Inception3', 'inception_v3', 'InceptionOutputs', '_InceptionOutputs'] | |
model_urls = { | |
# Inception v3 ported from TensorFlow | |
'inception_v3_google': 'https://download.pytorch.org/models/inception_v3_google-0cc3c7bd.pth', | |
} | |
InceptionOutputs = namedtuple('InceptionOutputs', ['logits', 'aux_logits']) | |
InceptionOutputs.__annotations__ = {'logits': Tensor, 'aux_logits': Optional[Tensor]} | |
# Script annotations failed with _GoogleNetOutputs = namedtuple ... | |
# _InceptionOutputs set here for backwards compat | |
_InceptionOutputs = InceptionOutputs | |
def inception_v3(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> "Inception3": | |
r"""Inception v3 model architecture from | |
`"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_. | |
.. note:: | |
**Important**: In contrast to the other models the inception_v3 expects tensors with a size of | |
N x 3 x 299 x 299, so ensure your images are sized accordingly. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
aux_logits (bool): If True, add an auxiliary branch that can improve training. | |
Default: *True* | |
transform_input (bool): If True, preprocesses the input according to the method with which it | |
was trained on ImageNet. Default: *False* | |
""" | |
if pretrained: | |
if 'transform_input' not in kwargs: | |
kwargs['transform_input'] = True | |
if 'aux_logits' in kwargs: | |
original_aux_logits = kwargs['aux_logits'] | |
kwargs['aux_logits'] = True | |
else: | |
original_aux_logits = True | |
kwargs['init_weights'] = False # we are loading weights from a pretrained model | |
model = Inception3(**kwargs) | |
state_dict = load_state_dict_from_url(model_urls['inception_v3_google'], | |
progress=progress) | |
model.load_state_dict(state_dict) | |
if not original_aux_logits: | |
model.aux_logits = False | |
model.AuxLogits = None | |
return model | |
return Inception3(**kwargs) | |
class Inception3(nn.Module): | |
def __init__( | |
self, | |
num_classes: int = 1000, | |
aux_logits: bool = True, | |
transform_input: bool = False, | |
inception_blocks: Optional[List[Callable[..., nn.Module]]] = None, | |
init_weights: Optional[bool] = None | |
) -> None: | |
super(Inception3, self).__init__() | |
if inception_blocks is None: | |
inception_blocks = [ | |
BasicConv2d, InceptionA, InceptionB, InceptionC, | |
InceptionD, InceptionE, InceptionAux | |
] | |
if init_weights is None: | |
warnings.warn('The default weight initialization of inception_v3 will be changed in future releases of ' | |
'torchvision. If you wish to keep the old behavior (which leads to long initialization times' | |
' due to scipy/scipy#11299), please set init_weights=True.', FutureWarning) | |
init_weights = True | |
assert len(inception_blocks) == 7 | |
conv_block = inception_blocks[0] | |
inception_a = inception_blocks[1] | |
inception_b = inception_blocks[2] | |
inception_c = inception_blocks[3] | |
inception_d = inception_blocks[4] | |
inception_e = inception_blocks[5] | |
inception_aux = inception_blocks[6] | |
self.aux_logits = aux_logits | |
self.transform_input = transform_input | |
self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2) | |
self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3) | |
self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1) | |
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2) | |
self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1) | |
self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3) | |
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2) | |
self.Mixed_5b = inception_a(192, pool_features=32) | |
self.Mixed_5c = inception_a(256, pool_features=64) | |
self.Mixed_5d = inception_a(288, pool_features=64) | |
self.Mixed_6a = inception_b(288) | |
self.Mixed_6b = inception_c(768, channels_7x7=128) | |
self.Mixed_6c = inception_c(768, channels_7x7=160) | |
self.Mixed_6d = inception_c(768, channels_7x7=160) | |
self.Mixed_6e = inception_c(768, channels_7x7=192) | |
self.AuxLogits: Optional[nn.Module] = None | |
if aux_logits: | |
self.AuxLogits = inception_aux(768, num_classes) | |
self.Mixed_7a = inception_d(768) | |
self.Mixed_7b = inception_e(1280) | |
self.Mixed_7c = inception_e(2048) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.dropout = nn.Dropout() | |
self.fc = nn.Linear(2048, num_classes) | |
if init_weights: | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): | |
import scipy.stats as stats | |
stddev = m.stddev if hasattr(m, 'stddev') else 0.1 | |
X = stats.truncnorm(-2, 2, scale=stddev) | |
values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) | |
values = values.view(m.weight.size()) | |
with torch.no_grad(): | |
m.weight.copy_(values) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def _transform_input(self, x: Tensor) -> Tensor: | |
if self.transform_input: | |
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 | |
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 | |
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 | |
x = torch.cat((x_ch0, x_ch1, x_ch2), 1) | |
return x | |
def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor]]: | |
# N x 3 x 299 x 299 | |
x = self.Conv2d_1a_3x3(x) | |
# N x 32 x 149 x 149 | |
x = self.Conv2d_2a_3x3(x) | |
# N x 32 x 147 x 147 | |
x = self.Conv2d_2b_3x3(x) | |
# N x 64 x 147 x 147 | |
feat = self.maxpool1(x) | |
# N x 64 x 73 x 73 | |
x = self.Conv2d_3b_1x1(feat) | |
# N x 80 x 73 x 73 | |
x = self.Conv2d_4a_3x3(x) | |
# N x 192 x 71 x 71 | |
x = self.maxpool2(x) | |
# N x 192 x 35 x 35 | |
x = self.Mixed_5b(x) | |
# N x 256 x 35 x 35 | |
x = self.Mixed_5c(x) | |
# N x 288 x 35 x 35 | |
x = self.Mixed_5d(x) | |
# N x 288 x 35 x 35 | |
x = self.Mixed_6a(x) | |
# N x 768 x 17 x 17 | |
x = self.Mixed_6b(x) | |
# N x 768 x 17 x 17 | |
x = self.Mixed_6c(x) | |
# N x 768 x 17 x 17 | |
x = self.Mixed_6d(x) | |
# N x 768 x 17 x 17 | |
x = self.Mixed_6e(x) | |
# N x 768 x 17 x 17 | |
aux: Optional[Tensor] = None | |
if self.AuxLogits is not None: | |
if self.training: | |
aux = self.AuxLogits(x) | |
# N x 768 x 17 x 17 | |
x = self.Mixed_7a(x) | |
# N x 1280 x 8 x 8 | |
x = self.Mixed_7b(x) | |
# N x 2048 x 8 x 8 | |
x = self.Mixed_7c(x) | |
# N x 2048 x 8 x 8 | |
# Adaptive average pooling | |
x = self.avgpool(x) | |
# N x 2048 x 1 x 1 | |
x = self.dropout(x) | |
# N x 2048 x 1 x 1 | |
x = torch.flatten(x, 1) | |
# N x 2048 | |
x = self.fc(x) | |
# N x 1000 (num_classes) | |
return feat, x, aux | |
def eager_outputs(self, x: Tensor, aux: Optional[Tensor]) -> InceptionOutputs: | |
if self.training and self.aux_logits: | |
return InceptionOutputs(x, aux) | |
else: | |
return x # type: ignore[return-value] | |
def forward(self, x: Tensor) -> InceptionOutputs: | |
x = self._transform_input(x) | |
feat, x, aux = self._forward(x) | |
aux_defined = self.training and self.aux_logits | |
if torch.jit.is_scripting(): | |
if not aux_defined: | |
warnings.warn("Scripted Inception3 always returns Inception3 Tuple") | |
return feat, InceptionOutputs(x, aux) | |
else: | |
return feat, self.eager_outputs(x, aux) | |
class InceptionA(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
pool_features: int, | |
conv_block: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(InceptionA, self).__init__() | |
if conv_block is None: | |
conv_block = BasicConv2d | |
self.branch1x1 = conv_block(in_channels, 64, kernel_size=1) | |
self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1) | |
self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2) | |
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) | |
self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) | |
self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1) | |
self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1) | |
def _forward(self, x: Tensor) -> List[Tensor]: | |
branch1x1 = self.branch1x1(x) | |
branch5x5 = self.branch5x5_1(x) | |
branch5x5 = self.branch5x5_2(branch5x5) | |
branch3x3dbl = self.branch3x3dbl_1(x) | |
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) | |
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] | |
return outputs | |
def forward(self, x: Tensor) -> Tensor: | |
outputs = self._forward(x) | |
return torch.cat(outputs, 1) | |
class InceptionB(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
conv_block: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(InceptionB, self).__init__() | |
if conv_block is None: | |
conv_block = BasicConv2d | |
self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2) | |
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) | |
self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) | |
self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2) | |
def _forward(self, x: Tensor) -> List[Tensor]: | |
branch3x3 = self.branch3x3(x) | |
branch3x3dbl = self.branch3x3dbl_1(x) | |
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) | |
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) | |
outputs = [branch3x3, branch3x3dbl, branch_pool] | |
return outputs | |
def forward(self, x: Tensor) -> Tensor: | |
outputs = self._forward(x) | |
return torch.cat(outputs, 1) | |
class InceptionC(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
channels_7x7: int, | |
conv_block: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(InceptionC, self).__init__() | |
if conv_block is None: | |
conv_block = BasicConv2d | |
self.branch1x1 = conv_block(in_channels, 192, kernel_size=1) | |
c7 = channels_7x7 | |
self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1) | |
self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) | |
self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0)) | |
self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1) | |
self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) | |
self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) | |
self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) | |
self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3)) | |
self.branch_pool = conv_block(in_channels, 192, kernel_size=1) | |
def _forward(self, x: Tensor) -> List[Tensor]: | |
branch1x1 = self.branch1x1(x) | |
branch7x7 = self.branch7x7_1(x) | |
branch7x7 = self.branch7x7_2(branch7x7) | |
branch7x7 = self.branch7x7_3(branch7x7) | |
branch7x7dbl = self.branch7x7dbl_1(x) | |
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) | |
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) | |
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) | |
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) | |
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] | |
return outputs | |
def forward(self, x: Tensor) -> Tensor: | |
outputs = self._forward(x) | |
return torch.cat(outputs, 1) | |
class InceptionD(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
conv_block: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(InceptionD, self).__init__() | |
if conv_block is None: | |
conv_block = BasicConv2d | |
self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1) | |
self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2) | |
self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1) | |
self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3)) | |
self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0)) | |
self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2) | |
def _forward(self, x: Tensor) -> List[Tensor]: | |
branch3x3 = self.branch3x3_1(x) | |
branch3x3 = self.branch3x3_2(branch3x3) | |
branch7x7x3 = self.branch7x7x3_1(x) | |
branch7x7x3 = self.branch7x7x3_2(branch7x7x3) | |
branch7x7x3 = self.branch7x7x3_3(branch7x7x3) | |
branch7x7x3 = self.branch7x7x3_4(branch7x7x3) | |
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) | |
outputs = [branch3x3, branch7x7x3, branch_pool] | |
return outputs | |
def forward(self, x: Tensor) -> Tensor: | |
outputs = self._forward(x) | |
return torch.cat(outputs, 1) | |
class InceptionE(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
conv_block: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(InceptionE, self).__init__() | |
if conv_block is None: | |
conv_block = BasicConv2d | |
self.branch1x1 = conv_block(in_channels, 320, kernel_size=1) | |
self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1) | |
self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) | |
self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) | |
self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1) | |
self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1) | |
self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) | |
self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) | |
self.branch_pool = conv_block(in_channels, 192, kernel_size=1) | |
def _forward(self, x: Tensor) -> List[Tensor]: | |
branch1x1 = self.branch1x1(x) | |
branch3x3 = self.branch3x3_1(x) | |
branch3x3 = [ | |
self.branch3x3_2a(branch3x3), | |
self.branch3x3_2b(branch3x3), | |
] | |
branch3x3 = torch.cat(branch3x3, 1) | |
branch3x3dbl = self.branch3x3dbl_1(x) | |
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
branch3x3dbl = [ | |
self.branch3x3dbl_3a(branch3x3dbl), | |
self.branch3x3dbl_3b(branch3x3dbl), | |
] | |
branch3x3dbl = torch.cat(branch3x3dbl, 1) | |
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | |
return outputs | |
def forward(self, x: Tensor) -> Tensor: | |
outputs = self._forward(x) | |
return torch.cat(outputs, 1) | |
class InceptionAux(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
num_classes: int, | |
conv_block: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(InceptionAux, self).__init__() | |
if conv_block is None: | |
conv_block = BasicConv2d | |
self.conv0 = conv_block(in_channels, 128, kernel_size=1) | |
self.conv1 = conv_block(128, 768, kernel_size=5) | |
self.conv1.stddev = 0.01 # type: ignore[assignment] | |
self.fc = nn.Linear(768, num_classes) | |
self.fc.stddev = 0.001 # type: ignore[assignment] | |
def forward(self, x: Tensor) -> Tensor: | |
# N x 768 x 17 x 17 | |
x = F.avg_pool2d(x, kernel_size=5, stride=3) | |
# N x 768 x 5 x 5 | |
x = self.conv0(x) | |
# N x 128 x 5 x 5 | |
x = self.conv1(x) | |
# N x 768 x 1 x 1 | |
# Adaptive average pooling | |
x = F.adaptive_avg_pool2d(x, (1, 1)) | |
# N x 768 x 1 x 1 | |
x = torch.flatten(x, 1) | |
# N x 768 | |
x = self.fc(x) | |
# N x 1000 | |
return x | |
class BasicConv2d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
**kwargs: Any | |
) -> None: | |
super(BasicConv2d, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) | |
self.bn = nn.BatchNorm2d(out_channels, eps=0.001) | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.conv(x) | |
x = self.bn(x) | |
return F.relu(x, inplace=True) | |