hjc-owo
init repo
966ae59
# -*- coding: utf-8 -*-
# Description:
import warnings
from math import ceil
from fractions import Fraction
from . import interp_methods
class NoneClass:
pass
try:
import torch
from torch import nn
nnModuleWrapped = nn.Module
except ImportError:
warnings.warn('No PyTorch found, will work only with Numpy')
torch = None
nnModuleWrapped = NoneClass
try:
import numpy
except ImportError:
warnings.warn('No Numpy found, will work only with PyTorch')
numpy = None
if numpy is None and torch is None:
raise ImportError("Must have either Numpy or PyTorch but both not found")
def resize(input, scale_factors=None, out_shape=None,
interp_method=interp_methods.cubic, support_sz=None,
antialiasing=True, by_convs=False, scale_tolerance=None,
max_numerator=10, pad_mode='replicate'):
# get properties of the input tensor
in_shape, n_dims = input.shape, input.ndim
# fw stands for framework that can be either numpy or torch,
# determined by the input type
fw = numpy if type(input) is numpy.ndarray else torch
eps = fw.finfo(fw.float32).eps
device = input.device if fw is torch else None
# set missing scale factors or output shapem one according to another,
# scream if both missing. this is also where all the defults policies
# take place. also handling the by_convs attribute carefully.
scale_factors, out_shape, by_convs = set_scale_and_out_sz(in_shape,
out_shape,
scale_factors,
by_convs,
scale_tolerance,
max_numerator,
eps, fw)
# sort indices of dimensions according to scale of each dimension.
# since we are going dim by dim this is efficient
sorted_filtered_dims_and_scales = [(dim, scale_factors[dim], by_convs[dim],
in_shape[dim], out_shape[dim])
for dim in sorted(range(n_dims),
key=lambda ind: scale_factors[ind])
if scale_factors[dim] != 1.]
# unless support size is specified by the user, it is an attribute
# of the interpolation method
if support_sz is None:
support_sz = interp_method.support_sz
# output begins identical to input and changes with each iteration
output = input
# iterate over dims
for (dim, scale_factor, dim_by_convs, in_sz, out_sz
) in sorted_filtered_dims_and_scales:
# STEP 1- PROJECTED GRID: The non-integer locations of the projection
# of output pixel locations to the input tensor
projected_grid = get_projected_grid(in_sz, out_sz,
scale_factor, fw, dim_by_convs,
device)
# STEP 1.5: ANTIALIASING- If antialiasing is taking place, we modify
# the window size and the interpolation method (see inside function)
cur_interp_method, cur_support_sz = apply_antialiasing_if_needed(
interp_method,
support_sz,
scale_factor,
antialiasing)
# STEP 2- FIELDS OF VIEW: for each output pixels, map the input pixels
# that influence it. Also calculate needed padding and update grid
# accoedingly
field_of_view = get_field_of_view(projected_grid, cur_support_sz, fw,
eps, device)
# STEP 2.5- CALCULATE PAD AND UPDATE: according to the field of view,
# the input should be padded to handle the boundaries, coordinates
# should be updated. actual padding only occurs when weights are
# aplied (step 4). if using by_convs for this dim, then we need to
# calc right and left boundaries for each filter instead.
pad_sz, projected_grid, field_of_view = calc_pad_sz(in_sz, out_sz,
field_of_view,
projected_grid,
scale_factor,
dim_by_convs, fw,
device)
# STEP 3- CALCULATE WEIGHTS: Match a set of weights to the pixels in
# the field of view for each output pixel
weights = get_weights(cur_interp_method, projected_grid, field_of_view)
# STEP 4- APPLY WEIGHTS: Each output pixel is calculated by multiplying
# its set of weights with the pixel values in its field of view.
# We now multiply the fields of view with their matching weights.
# We do this by tensor multiplication and broadcasting.
# if by_convs is true for this dim, then we do this action by
# convolutions. this is equivalent but faster.
if not dim_by_convs:
output = apply_weights(output, field_of_view, weights, dim, n_dims,
pad_sz, pad_mode, fw)
else:
output = apply_convs(output, scale_factor, in_sz, out_sz, weights,
dim, pad_sz, pad_mode, fw)
return output
def get_projected_grid(in_sz, out_sz, scale_factor, fw, by_convs, device=None):
# we start by having the ouput coordinates which are just integer locations
# in the special case when usin by_convs, we only need two cycles of grid
# points. the first and last.
grid_sz = out_sz if not by_convs else scale_factor.numerator
out_coordinates = fw_arange(grid_sz, fw, device)
# This is projecting the ouput pixel locations in 1d to the input tensor,
# as non-integer locations.
# the following fomrula is derived in the paper
# "From Discrete to Continuous Convolutions" by Shocher et al.
return (out_coordinates / float(scale_factor) +
(in_sz - 1) / 2 - (out_sz - 1) / (2 * float(scale_factor)))
def get_field_of_view(projected_grid, cur_support_sz, fw, eps, device):
# for each output pixel, map which input pixels influence it, in 1d.
# we start by calculating the leftmost neighbor, using half of the window
# size (eps is for when boundary is exact int)
left_boundaries = fw_ceil(projected_grid - cur_support_sz / 2 - eps, fw)
# then we simply take all the pixel centers in the field by counting
# window size pixels from the left boundary
ordinal_numbers = fw_arange(ceil(cur_support_sz - eps), fw, device)
return left_boundaries[:, None] + ordinal_numbers
def calc_pad_sz(in_sz, out_sz, field_of_view, projected_grid, scale_factor,
dim_by_convs, fw, device):
if not dim_by_convs:
# determine padding according to neighbor coords out of bound.
# this is a generalized notion of padding, when pad<0 it means crop
pad_sz = [-field_of_view[0, 0].item(),
field_of_view[-1, -1].item() - in_sz + 1]
# since input image will be changed by padding, coordinates of both
# field_of_view and projected_grid need to be updated
field_of_view += pad_sz[0]
projected_grid += pad_sz[0]
else:
# only used for by_convs, to calc the boundaries of each filter the
# number of distinct convolutions is the numerator of the scale factor
num_convs, stride = scale_factor.numerator, scale_factor.denominator
# calculate left and right boundaries for each conv. left can also be
# negative right can be bigger than in_sz. such cases imply padding if
# needed. however if# both are in-bounds, it means we need to crop,
# practically apply the conv only on part of the image.
left_pads = -field_of_view[:, 0]
# next calc is tricky, explanation by rows:
# 1) counting output pixels between the first position of each filter
# to the right boundary of the input
# 2) dividing it by number of filters to count how many 'jumps'
# each filter does
# 3) multiplying by the stride gives us the distance over the input
# coords done by all these jumps for each filter
# 4) to this distance we add the right boundary of the filter when
# placed in its leftmost position. so now we get the right boundary
# of that filter in input coord.
# 5) the padding size needed is obtained by subtracting the rightmost
# input coordinate. if the result is positive padding is needed. if
# negative then negative padding means shaving off pixel columns.
right_pads = (((out_sz - fw_arange(num_convs, fw, device) - 1) # (1)
// num_convs) # (2)
* stride # (3)
+ field_of_view[:, -1] # (4)
- in_sz + 1) # (5)
# in the by_convs case pad_sz is a list of left-right pairs. one per
# each filter
pad_sz = list(zip(left_pads, right_pads))
return pad_sz, projected_grid, field_of_view
def get_weights(interp_method, projected_grid, field_of_view):
# the set of weights per each output pixels is the result of the chosen
# interpolation method applied to the distances between projected grid
# locations and the pixel-centers in the field of view (distances are
# directed, can be positive or negative)
weights = interp_method(projected_grid[:, None] - field_of_view)
# we now carefully normalize the weights to sum to 1 per each output pixel
sum_weights = weights.sum(1, keepdims=True)
sum_weights[sum_weights == 0] = 1
return weights / sum_weights
def apply_weights(input, field_of_view, weights, dim, n_dims, pad_sz, pad_mode,
fw):
# for this operation we assume the resized dim is the first one.
# so we transpose and will transpose back after multiplying
tmp_input = fw_swapaxes(input, dim, 0, fw)
# apply padding
tmp_input = fw_pad(tmp_input, fw, pad_sz, pad_mode)
# field_of_view is a tensor of order 2: for each output (1d location
# along cur dim)- a list of 1d neighbors locations.
# note that this whole operations is applied to each dim separately,
# this is why it is all in 1d.
# neighbors = tmp_input[field_of_view] is a tensor of order image_dims+1:
# for each output pixel (this time indicated in all dims), these are the
# values of the neighbors in the 1d field of view. note that we only
# consider neighbors along the current dim, but such set exists for every
# multi-dim location, hence the final tensor order is image_dims+1.
neighbors = tmp_input[field_of_view]
# weights is an order 2 tensor: for each output location along 1d- a list
# of weights matching the field of view. we augment it with ones, for
# broadcasting, so that when multiplies some tensor the weights affect
# only its first dim.
tmp_weights = fw.reshape(weights, (*weights.shape, *[1] * (n_dims - 1)))
# now we simply multiply the weights with the neighbors, and then sum
# along the field of view, to get a single value per out pixel
tmp_output = (neighbors * tmp_weights).sum(1)
# we transpose back the resized dim to its original position
return fw_swapaxes(tmp_output, 0, dim, fw)
def apply_convs(input, scale_factor, in_sz, out_sz, weights, dim, pad_sz,
pad_mode, fw):
# for this operations we assume the resized dim is the last one.
# so we transpose and will transpose back after multiplying
input = fw_swapaxes(input, dim, -1, fw)
# the stride for all convs is the denominator of the scale factor
stride, num_convs = scale_factor.denominator, scale_factor.numerator
# prepare an empty tensor for the output
tmp_out_shape = list(input.shape)
tmp_out_shape[-1] = out_sz
tmp_output = fw_empty(tuple(tmp_out_shape), fw, input.device)
# iterate over the conv operations. we have as many as the numerator
# of the scale-factor. for each we need boundaries and a filter.
for conv_ind, (pad_sz, filt) in enumerate(zip(pad_sz, weights)):
# apply padding (we pad last dim, padding can be negative)
pad_dim = input.ndim - 1
tmp_input = fw_pad(input, fw, pad_sz, pad_mode, dim=pad_dim)
# apply convolution over last dim. store in the output tensor with
# positional strides so that when the loop is comlete conv results are
# interwind
tmp_output[..., conv_ind::num_convs] = fw_conv(tmp_input, filt, stride)
return fw_swapaxes(tmp_output, -1, dim, fw)
def set_scale_and_out_sz(in_shape, out_shape, scale_factors, by_convs,
scale_tolerance, max_numerator, eps, fw):
# eventually we must have both scale-factors and out-sizes for all in/out
# dims. however, we support many possible partial arguments
if scale_factors is None and out_shape is None:
raise ValueError("either scale_factors or out_shape should be "
"provided")
if out_shape is not None:
# if out_shape has less dims than in_shape, we defaultly resize the
# first dims for numpy and last dims for torch
out_shape = (list(out_shape) + list(in_shape[len(out_shape):])
if fw is numpy
else list(in_shape[:-len(out_shape)]) + list(out_shape))
if scale_factors is None:
# if no scale given, we calculate it as the out to in ratio
# (not recomended)
scale_factors = [out_sz / in_sz for out_sz, in_sz
in zip(out_shape, in_shape)]
if scale_factors is not None:
# by default, if a single number is given as scale, we assume resizing
# two dims (most common are images with 2 spatial dims)
scale_factors = (scale_factors
if isinstance(scale_factors, (list, tuple))
else [scale_factors, scale_factors])
# if less scale_factors than in_shape dims, we defaultly resize the
# first dims for numpy and last dims for torch
scale_factors = (list(scale_factors) + [1] *
(len(in_shape) - len(scale_factors)) if fw is numpy
else [1] * (len(in_shape) - len(scale_factors)) +
list(scale_factors))
if out_shape is None:
# when no out_shape given, it is calculated by multiplying the
# scale by the in_shape (not recomended)
out_shape = [ceil(scale_factor * in_sz)
for scale_factor, in_sz in
zip(scale_factors, in_shape)]
# next part intentionally after out_shape determined for stability
# we fix by_convs to be a list of truth values in case it is not
if not isinstance(by_convs, (list, tuple)):
by_convs = [by_convs] * len(out_shape)
# next loop fixes the scale for each dim to be either frac or float.
# this is determined by by_convs and by tolerance for scale accuracy.
for ind, (sf, dim_by_convs) in enumerate(zip(scale_factors, by_convs)):
# first we fractionaize
if dim_by_convs:
frac = Fraction(1 / sf).limit_denominator(max_numerator)
frac = Fraction(numerator=frac.denominator, denominator=frac.numerator)
# if accuracy is within tolerance scale will be frac. if not, then
# it will be float and the by_convs attr will be set false for
# this dim
if scale_tolerance is None:
scale_tolerance = eps
if dim_by_convs and abs(frac - sf) < scale_tolerance:
scale_factors[ind] = frac
else:
scale_factors[ind] = float(sf)
by_convs[ind] = False
return scale_factors, out_shape, by_convs
def apply_antialiasing_if_needed(interp_method, support_sz, scale_factor,
antialiasing):
# antialiasing is "stretching" the field of view according to the scale
# factor (only for downscaling). this is low-pass filtering. this
# requires modifying both the interpolation (stretching the 1d
# function and multiplying by the scale-factor) and the window size.
scale_factor = float(scale_factor)
if scale_factor >= 1.0 or not antialiasing:
return interp_method, support_sz
cur_interp_method = (lambda arg: scale_factor *
interp_method(scale_factor * arg))
cur_support_sz = support_sz / scale_factor
return cur_interp_method, cur_support_sz
def fw_ceil(x, fw):
if fw is numpy:
return fw.int_(fw.ceil(x))
else:
return x.ceil().long()
def fw_floor(x, fw):
if fw is numpy:
return fw.int_(fw.floor(x))
else:
return x.floor().long()
def fw_cat(x, fw):
if fw is numpy:
return fw.concatenate(x)
else:
return fw.cat(x)
def fw_swapaxes(x, ax_1, ax_2, fw):
if fw is numpy:
return fw.swapaxes(x, ax_1, ax_2)
else:
return x.transpose(ax_1, ax_2)
def fw_pad(x, fw, pad_sz, pad_mode, dim=0):
if pad_sz == (0, 0):
return x
if fw is numpy:
pad_vec = [(0, 0)] * x.ndim
pad_vec[dim] = pad_sz
return fw.pad(x, pad_width=pad_vec, mode=pad_mode)
else:
if x.ndim < 3:
x = x[None, None, ...]
pad_vec = [0] * ((x.ndim - 2) * 2)
pad_vec[0:2] = pad_sz
return fw.nn.functional.pad(x.transpose(dim, -1), pad=pad_vec,
mode=pad_mode).transpose(dim, -1)
def fw_conv(input, filter, stride):
# we want to apply 1d conv to any nd array. the way to do it is to reshape
# the input to a 4D tensor. first two dims are singeletons, 3rd dim stores
# all the spatial dims that we are not convolving along now. then we can
# apply conv2d with a 1xK filter. This convolves the same way all the other
# dims stored in the 3d dim. like depthwise conv over these.
# TODO: numpy support
reshaped_input = input.reshape(1, 1, -1, input.shape[-1])
reshaped_output = torch.nn.functional.conv2d(reshaped_input,
filter.view(1, 1, 1, -1),
stride=(1, stride))
return reshaped_output.reshape(*input.shape[:-1], -1)
def fw_arange(upper_bound, fw, device):
if fw is numpy:
return fw.arange(upper_bound)
else:
return fw.arange(upper_bound, device=device)
def fw_empty(shape, fw, device):
if fw is numpy:
return fw.empty(shape)
else:
return fw.empty(size=(*shape,), device=device)