Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[144]:
|
5 |
+
|
6 |
+
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from langchain.chains import LLMChain
|
10 |
+
|
11 |
+
import os
|
12 |
+
|
13 |
+
import google.generativeai as genai
|
14 |
+
from langchain.document_loaders import PyPDFLoader
|
15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
+
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
17 |
+
from langchain.vectorstores import FAISS
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
|
21 |
+
os.environ["MY_SECRET_KEY"] = "AIzaSyDRj3wAgqOCjc_D45W_u-G3y9dk5YDgxEo"
|
22 |
+
|
23 |
+
|
24 |
+
# In[145]:
|
25 |
+
|
26 |
+
|
27 |
+
#pip install pypdf
|
28 |
+
#!pip install faiss-cpu
|
29 |
+
|
30 |
+
|
31 |
+
# In[146]:
|
32 |
+
|
33 |
+
|
34 |
+
google_api_key = os.environ["MY_SECRET_KEY"]
|
35 |
+
|
36 |
+
# Check if the API key was found
|
37 |
+
if google_api_key:
|
38 |
+
# Set the environment variable if the API key was found
|
39 |
+
os.environ["GOOGLE_API_KEY"] = google_api_key
|
40 |
+
|
41 |
+
llm = ChatGoogleGenerativeAI(
|
42 |
+
model="gemini-pro", # Specify the model name
|
43 |
+
google_api_key=os.environ["GOOGLE_API_KEY"]
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
print("Error: GOOGLE_API_KEY not found in Colab secrets. Please store your API key.")
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
genai.configure(api_key=google_api_key)
|
51 |
+
model = genai.GenerativeModel("gemini-pro")
|
52 |
+
|
53 |
+
|
54 |
+
# In[147]:
|
55 |
+
|
56 |
+
|
57 |
+
work_dir=os.getcwd()
|
58 |
+
|
59 |
+
|
60 |
+
# In[148]:
|
61 |
+
|
62 |
+
|
63 |
+
# Verify file existence
|
64 |
+
assert "RAG.pdf" in os.listdir(work_dir), "RAG.pdf not found in the specified directory!"
|
65 |
+
print(f"Current Working Directory: {os.getcwd()}")
|
66 |
+
|
67 |
+
|
68 |
+
# In[149]:
|
69 |
+
|
70 |
+
|
71 |
+
# Load PDF and split text
|
72 |
+
pdf_path = "RAG.pdf" # Ensure this file is uploaded to Colab
|
73 |
+
loader = PyPDFLoader(pdf_path)
|
74 |
+
documents = loader.load()
|
75 |
+
|
76 |
+
# Split text into chunks
|
77 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)
|
78 |
+
text_chunks = text_splitter.split_documents(documents)
|
79 |
+
|
80 |
+
|
81 |
+
# In[150]:
|
82 |
+
|
83 |
+
|
84 |
+
# Generate embeddings
|
85 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
86 |
+
|
87 |
+
# Store embeddings in FAISS index
|
88 |
+
vectorstore = FAISS.from_documents(text_chunks, embeddings)
|
89 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
|
90 |
+
|
91 |
+
|
92 |
+
# In[151]:
|
93 |
+
|
94 |
+
|
95 |
+
# Set up Gemini model
|
96 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001", temperature=0)
|
97 |
+
#llm = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0)
|
98 |
+
|
99 |
+
|
100 |
+
# In[152]:
|
101 |
+
|
102 |
+
|
103 |
+
import gradio as gr
|
104 |
+
from langchain.prompts import PromptTemplate
|
105 |
+
from langchain.chains import LLMChain
|
106 |
+
|
107 |
+
def rag_query(query):
|
108 |
+
# Retrieve relevant documents
|
109 |
+
docs = retriever.get_relevant_documents(query)
|
110 |
+
|
111 |
+
# Otherwise, use RAG
|
112 |
+
context = "\n".join([doc.page_content for doc in docs])
|
113 |
+
prompt = f"Context:\n{context}\n\nQuestion: {query}\nAnswer directly and concisely:"
|
114 |
+
|
115 |
+
try:
|
116 |
+
response = llm.invoke(prompt)
|
117 |
+
except Exception as e:
|
118 |
+
response = f"Error in RAG processing: {str(e)}"
|
119 |
+
|
120 |
+
return response.content
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
# In[153]:
|
126 |
+
|
127 |
+
|
128 |
+
import gradio as gr
|
129 |
+
from langchain.prompts import PromptTemplate
|
130 |
+
from langchain.chains import LLMChain
|
131 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
132 |
+
|
133 |
+
# Initialize LLM once (avoid repeated initialization)
|
134 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
135 |
+
|
136 |
+
# Define the general query function
|
137 |
+
def general_query(query):
|
138 |
+
try:
|
139 |
+
# Define the prompt correctly
|
140 |
+
prompt = PromptTemplate.from_template("Answer the following query: {query}")
|
141 |
+
|
142 |
+
# Create an LLM Chain
|
143 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
144 |
+
|
145 |
+
# Run chatbot and return response
|
146 |
+
response = chain.run(query=query)
|
147 |
+
|
148 |
+
return response # Return response directly (not response.content)
|
149 |
+
|
150 |
+
except Exception as e:
|
151 |
+
return f"Error: {str(e)}"
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
# In[154]:
|
156 |
+
|
157 |
+
|
158 |
+
import gradio as gr
|
159 |
+
|
160 |
+
|
161 |
+
# Function to call the selected query method
|
162 |
+
def query_router(query, method):
|
163 |
+
if method == "Team Query": # Ensure exact match with dropdown options
|
164 |
+
return rag_query(query)
|
165 |
+
elif method == "General Query":
|
166 |
+
return general_query(query)
|
167 |
+
return "Invalid selection!"
|
168 |
+
|
169 |
+
# Define local image paths
|
170 |
+
logo_path = "Equinix-LOGO.jpeg" # Ensure this file exists
|
171 |
+
|
172 |
+
# Custom CSS for background styling
|
173 |
+
custom_css = """
|
174 |
+
.gradio-container {
|
175 |
+
background-color: #f0f0f0;
|
176 |
+
text-align: center;
|
177 |
+
}
|
178 |
+
#logo img {
|
179 |
+
display: block;
|
180 |
+
margin: 0 auto;
|
181 |
+
max-width: 200px; /* Adjust size */
|
182 |
+
}
|
183 |
+
"""
|
184 |
+
|
185 |
+
# Create Gradio UI
|
186 |
+
with gr.Blocks(css=custom_css) as ui:
|
187 |
+
gr.Image(logo_path, elem_id="logo", show_label=False, height=100, width=200) # Display Logo
|
188 |
+
|
189 |
+
# Title & Description
|
190 |
+
gr.Markdown("<h1 style='text-align: center; color: black;'>Equinix Chatbot for Automation Team</h1>")
|
191 |
+
gr.Markdown("<p style='text-align: center; color: black;'>Ask me anything!</p>")
|
192 |
+
|
193 |
+
# Input & Dropdown Section
|
194 |
+
with gr.Row():
|
195 |
+
query_input = gr.Textbox(label="Enter your query")
|
196 |
+
query_method = gr.Dropdown(["Team Query", "General Query"], label="Select Query Type")
|
197 |
+
|
198 |
+
# Button for submitting query
|
199 |
+
submit_button = gr.Button("Submit")
|
200 |
+
|
201 |
+
# Output Textbox
|
202 |
+
output_box = gr.Textbox(label="Response", interactive=False)
|
203 |
+
|
204 |
+
# Button Click Event
|
205 |
+
submit_button.click(query_router, inputs=[query_input, query_method], outputs=output_box)
|
206 |
+
|
207 |
+
# Launch UI
|
208 |
+
ui.launch(share=True)
|
209 |
+
|
210 |
+
|
211 |
+
# In[168]:
|
212 |
+
|
213 |
+
|
214 |
+
get_ipython().system('jupyter nbconvert --to script GenAI_1.ipynb')
|
215 |
+
|